期刊文献+

多传感器线性最小方差最优信息融合估计准则 被引量:31

Multi-sensor Optimal Information Fusion Criterion in Linear Minimum Variance Sense
下载PDF
导出
摘要 用Lagrange乘数法和矩阵微分运算 ,分别提出了按矩阵加权、按标量加权和各分量按标量加权的三种线性最小方差信息融合估计准则 ,其中考虑了估计误差之间的相关性 ,推广和发展了现有文献的结果。文中比较了三种融合估计的精度和计算负担 。 Using Lagrange multiplier method and matrix differential operation, three information fusion estimation criterions are presented in the linear minimum variance sense, where the fusion estimators are respectively weighted by matrices, weighted by scalar and weighted by scalar on components. The correlation among estimation errors is considered. The results of existing literatures are extended and developed. Their precision and computational burdens are compared. They can be applied into optimal information fusion estimation for the states or signals.
出处 《科学技术与工程》 2004年第5期334-336,340,共4页 Science Technology and Engineering
基金 国家自然科学基金 ( 60 3 740 2 6)资助
关键词 多传感器 线性最小方差 最优信息融合 估计准则 矩阵微分运算 矩阵加权 multisensor optimal information fusion criterion linear minimum variance fusion estimation
  • 相关文献

参考文献2

  • 1[1]Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Trans Aerospace and Electronic Systems, 1990; 26(3) :517-525
  • 2[2]Kim K H. Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, June 1994: 1037-1041

同被引文献209

引证文献31

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部