期刊文献+

两传感器信息融合超前k步稳态最优Kalman预报器 被引量:3

Two-sensor Information Fusion k-step-ahead Steady-state Optimal Kalman Predictor
下载PDF
导出
摘要 应用Kalman滤波方法 ,基于Riccati方程 ,对于带相关噪声的系统 ,在线性最小方差融合准则下 ,提出了两传感器按矩阵加权信息融合超前k步稳态最优Kalman预报器 ,给出了最优加权阵和最小融合预报误差方差阵的具体计算公式。同单传感器情形相比 ,可提高预报器的精度。 Using Kalman filtering method, based on the Riccati equation, under the linear minimum variance information fusion criterion, the two-sensor information k \|step-ahead steady-state optimal Kalman predictor weighted by matrices is presented for systems with correlated noises, where the optimal weighting matrices ad minimum fused error variance matrix are given. Compared with the single sensor case, the accuracy of the predictor can be improved. A simulation example for a tracking system shows their effectiveness.
作者 邓自立 高媛
出处 《科学技术与工程》 2004年第5期337-340,共4页 Science Technology and Engineering
基金 国家自然科学基金 ( 60 3 740 2 6) 黑龙江省自然科学基金 (F0 1- 15 )资助
关键词 两传感器信息融合 信息融合状态估计 超前K步最优融合Kalman预报器 Kalman滤波方法 矩阵加权 two-sensor information fusion information fusion state estimation k -step-ahead optimal fusion Kalmar predictor Kalman filtering method
  • 相关文献

同被引文献13

  • 1邓自立,高媛,张明波.ARMA信号自校正信息融合Wiener滤波器[J].科学技术与工程,2004,4(9):749-752. 被引量:4
  • 2[2]Deng Zili,Gao Yuan,Mao Lin,Li Yun,Hao Gang.New approach to information fusion steady-state Kalman filtering.Automatica;2005,41(10):1695-1707
  • 3Sun Shu-Li, Deng Zi-Li. Multi-sensor information fusion optimal Kalman filter. Automatica, 2004, 40(6): 1017-1023.
  • 4Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman-filter-based multi-sensor data fusion. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(1):273-280.
  • 5Sun Shu-Li, Multi-sensor information fusion white noise filter weighted by scalars based Kalman predictor. Automatica, 2004,40(8): 1447-1453.
  • 6陈传璋,金福临,胡家赣.数学分析[M].上海:上海科学技术出版社,1962.
  • 7Deng Zi-li,Gao Yuan,Mao Lin,et al.New approach to information fusion steady-state Kalman filtering[J].Automatica,2005,41 (10):1695-1707.
  • 8Sun Shu-li.Deng Zi-li.Multisensor optimal information fusion Kalman filter[J].Automatica,2004,40(6):1017-1023.
  • 9Gao J B,Harris C J.Some remarks on Kalman filters for the multi-sensor fusion[J].Information Fusion,2002,3:191-201.
  • 10Gan Q,Harris CJ.Comparison of two measurement fusion methods for Kalman filter-based mutisensor data fusion[J].IEEE Transactions,Aerospace and Electronic Systems,2001,37(1):273-280.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部