期刊文献+

渐近非扩张型映射的不动点定理

Fixed point theorems for mappings of asymptotically nonexpansive type
下载PDF
导出
摘要 证明设X是具一致正规结构的Banach空间 ,C是X的非空有界子集 ,T :C→C是渐近非扩张型映射且存在某个N0 ∈N使得TN0 在C上连续 ,进一步设存在C的非空闭凸子集E具有性质 (P) ,则T在E中有不动点。 The purpose of this paper is to proof that Suppose X is a Banach space with uiform normal structure,C is a nonempty bounded subset of X,and T:C→C is an asymptotically nonexpansive type mapping such that there exists N 0∈N such that T N 0 is continuous on C.Further,suppose that there exists a nonempty closed convex subset E of C with the following property(P): x∈E implies ω W(x)E where ω W(x) is the weak ω-limit set of T at x;that is ,the set {y∈X:y=weak - lim iT n i x for some n i↑∞} The T has a fixed point in E.
作者 胡长松
出处 《湖北师范学院学报(自然科学版)》 2004年第2期7-8,共2页 Journal of Hubei Normal University(Natural Science)
基金 湖北省教育厅重大项目 (2 0 0 1Z0 60 0 3 )
关键词 渐近非扩张型映射 不动点定理 BANACH空间 一致正规结构 紧凸集 fixed point obymptotically nonexpansive type mapping uniform normal structure
  • 相关文献

参考文献8

  • 1[1]Goebel K,Kirk W.A fixed point theorem for asymptotically nonexpansive mappings[J].Proc.Amer.Math.Soc.1972,35:171~174.
  • 2[2]Kirk W. A fixed point theorem of non-lipschitzian mappings of asymptotically nonexpansive type[J].Israel J.Math.1974,17:339~346.
  • 3[3]Kirk W.A fixed point theorem for mappings which do not increase distances[J].Proc.Amer.Math.Soc.1965,72:1004~1006.
  • 4[4]Kim T H.Xu H K.Remarks on asymptotically nonexpansive mappings[J].Nonlinear Anal.TMA 2000,41:405~415.
  • 5[5]Lin P K,Tan K K,Xu H K.Demiclosedness principle and asymptotic behaviour for asymptotically nonexpansive mappings[J].Nonlinear Anal.TMA 1995,24:929~946.
  • 6[6]Lin T T,Xu H K.Fixed point theorem for asymptotically nonexpansive mappings[J].Nonlinear Anal.TMA 1994,22:1345~1355.
  • 7[7]Casini E,Maluta E.Fixed points of uniformly Lipschitzian mappings in space with uniformly normal structure[J].Nonlinaer Anal.TMA 1985,9:103~108.
  • 8[8]Li Gang,Sims Brailey.Fixed point theorems for mappings of asymptotically nonexpansive type[J].Nonlinear Anal.2002,50:1085~1091.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部