摘要
设M~α是n维黎曼流形,S^(n+p)(C)是(n+p)维截面曲率为常数C的黎曼流形,设f:M^n(?)S^(n+p)(C)是具有常中曲率H的迷向浸入,设K和R分别是M^n的截面曲率的下确界和数量曲率。本文给出K和R满足一定的关系,从而得到这种子流形是全脐子流形的几个充分条件。
Let S^(n+p)(c)be an(n+p)—space with constant Curvature C, and M^n a connected Riemannian manifold of dimension no Let f: M^n(?)S^(n+p)(c) be an isotropic immersion with constant mean curvature H. Let K and R be the infimum of sectional curvature and the scalar curvature of M^n, respectively. In this paper we gived some relation of K and R, and we obtained this submanifold is totally umbilical submanifolds.
出处
《宁夏大学学报(自然科学版)》
CAS
1992年第2期24-32,共9页
Journal of Ningxia University(Natural Science Edition)
关键词
迷向子流形
常曲率空间
平均曲率
黎曼流形
isotropic immersion
constant mean curvature
totally umbilical submanifolds