期刊文献+

Cooley-Tukey FFT在高维的算法 被引量:6

THE EXTENSION OF COOLEY-TUKEY FFT ALGORITHMS FOR MULTIDIMENSIONAL DFT
原文传递
导出
摘要 A new fast algorithm is presented for multidimensional DFT in this paper. This algorithm is derived based on an interesting coding technique for multidimensional integral point, named the technique vector coding. And called the algorithm VCFFT (vector coding fast Fourier transform). Since the VC-FFT is the extension of Cooley-Tukey algorithm from one-dimensional to multidimensional, its structure of program is simple as Cooley-Tukey FFT, and significantly reduces multiplications and recursive stages. A new fast algorithm is presented for multidimensional DFT in this paper. This algorithm is derived based on an interesting coding technique for multidimensional integral point, named the technique vector coding. And called the algorithm VC-FFT (vector coding fast Fourier transform). Since the VC-FFT is the extension of Cooley-Tukey algorithm from one-dimensional to multidimensional, its structure of program is simple as Cooley-Tukey FFT, and significantly reduces multiplications and recursive stages.
出处 《计算数学》 CSCD 北大核心 2004年第2期137-150,共14页 Mathematica Numerica Sinica
关键词 FFT 行列算法 向量基算法 向量编码 FFT, Row-column algorithm, Vector-radix algorithm, Vector coding
  • 相关文献

参考文献13

  • 1J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput, 19 (1965), 296-301.
  • 2P.Duhamel and M. Vetterli, Fast Fourier tranceforms: a tutorial review and astate of the art, Signal Processing, 19 (1990), 259-299.
  • 3D.B. Harris etc., Vector radix fast Fourier transtorm, 1977 IEEE Int. Cof. on Acoustics,Speech and Signal Processing, May 9-11 1977, 548-551.
  • 4P.P. Hong, Fast two-dimensional Fourier tranceform , Proceedings of the third Hawau in-ternational conferce on system science, Patt 2, 990-993 (1970).
  • 5Z.J. Mou and P.duhamel, In-place butterfly-style FFT of 2-D real sequences, IEEE Trans.ASSP., 26: 10 (1988), 1642-1650.
  • 6E.O.布赖姆,快速富里叶变换,(中译本)上海科技出版社,1979,199-201.
  • 7S.C. Pei and J.L. Wu, Split vector radix 2-D fast Fourier transform, IEEE Trans., August1987, CAS-34: 978-980.
  • 8H.R. Wu and F.J. Paoloai. On the two-dimensional vector-radix FFT algorithm, IEEETrans., August 1989, ASSP-37: 1302-1324.
  • 9H.R. Wu and F.J. Paoloai, The structure of vector radix fast Fourier transform, IEEE Trans., September 1989, ASSP-37: 1415-1424.
  • 10S.C. Chan and K.L. Ho, Split vector-radix fast Fourier transform, IEEE Trans. August 1992, SP-40: 2029-2039.

同被引文献32

  • 1孙家昶,姚继锋.平行六边形区域上的快速离散傅立叶变换[J].计算数学,2004,26(3):351-366. 被引量:10
  • 2左大海,常安定,马良.按频率抽取的基-2FFT算法的矩阵形式[J].纺织高校基础科学学报,2007,20(2):137-142. 被引量:1
  • 3HONG P P. Fast two-dimensional Fourier transform [C]//Proceedings of the Third Hawaii International Conferenee on System Seience. Hawaii: 3^th Hawaii International Conference on System Science, 1970:990-993.
  • 4MOU Z J, DUHAMEL P. In-place butterfly-style FFT of 2-D real sequences [J].IEEE Trans on Signal Processing, 1988,36 (10):1 642-1 650.
  • 5WU H R, PAOLOAI F J. On the two-dimensional vector-radix FFT algorithm [J]. IEEE Trans on Signal Processing, 1989, 37 (8):1302-1324.
  • 6WU H R, PAOLOAI F J. The structure of vector radix fast Fourier transform [J]. IEEE Trans on Signal Processing, 1989, 37(9):1 415-1 424.
  • 7COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series [J]. Mathematics of Computation, 1965,19 (90) :296-301.
  • 8OPPENHEIM Alan V, SCHAFER Ronald W, BUCK John R. Discrete-Time Signal Processing(2) [M]. Beijing : Tsinghua University Press, 2005 : 629-677.
  • 9DUHAMEL P, VETFERLI M. Fast Fourier transforms: a tutorial review and a state of the art [J]. Signal Processing, 1990,19 (4):259-299.
  • 10HARRIS D B. Vector radix fast Fourier transform [J]. IEEE International Conference on ICASSP '77, 1977,2:548-551.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部