期刊文献+

粗糙集模糊神经网络味觉信号识别系统 被引量:1

Rough-set-based fuzzy-neural-network system for taste signal identification
下载PDF
导出
摘要 针对C-means聚类算法和减法聚类算法的不足,提出了一种模糊神经网络味觉信号识别系统模型,该模型利用粗糙集的离散化算法和规则提取算法获得数量较少的分类规则,将这些分类规则转化为模糊IF-THEN规则,进而通过这些模糊IF-THEN规则确定网络结构。网络输出采用投票机制,使用粒子群优化方法精炼网络参数,与常用的提取模糊if-then规则的算法相比,该方法只有一个参数且易于实现。实验结果表明:该方法可获得更简洁的系统表示,并且通过选择合适的系统参数可使系统对加噪声训练样本的错误识别率降低5%左右。 Comparing with general methods to acquire fuzzy if-then rules,such as C-means and the subtractive clustering algorithm, a fuzzy neural network model for identifying 11 kinds of mineral waters by its taste signals is proposed.In the model,a classification rule extracting algorithm based on discretization methods in rough sets is developed to extract fewer but robust classification rules,which are ease to be translated to fuzzy if-then rules to construct a fuzzy neural network system.This method is easy to implement and it requires only one parameter.Finally,the voting mechanism is used to decide the network output and the particle swarm optimization is adopted to refine the network parameters.Experimental results show that the system can acquire more compact representation,and by choosing the system parameter properly,the misclassification rates for the training samples polluted by the noise can be improved about 5%.
出处 《吉林大学学报(信息科学版)》 CAS 2004年第3期236-243,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60175024) 教育部科学技术研究重点项目(02090) 教育部"符号计算与知识工程"重点实验室资助项目
关键词 离散化 规则提取 模糊神经网络 粒子群优化 discretization rules extracting fuzzy neural network particle swarm optimization
  • 相关文献

参考文献8

  • 1AKIRA YOKOYAMA,HIDEKAZU UCHIDA,TERUAKI KATSUDE.Quantitive sampling analysis for a taste sensor[C]//The 3rd International Conference Engineering Design and Automation.Tokyo:The Institute of Electrical Engineers of Japan,1999.(Ed.:T)
  • 2CHIU S.Fuzzy Model identification based on cluster estimation [J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.
  • 3BOTTOU L,BENGIO Y.Convergence properties of the k-means algorithms[C]//Advances in Neural Information Processing Systems 7.Cambridge:MIT Press,1995:585-592.
  • 4NGUYEN H S.Discretization of Real Value Attributes:A Boolean Reasoning Approach [D].Warsaw:Computer Science Department University of Warsaw,1997.
  • 5LUDMILA I KUNCHEVA.How good are fuzzy if-then classifiers [J].IEEE Transaction on Systems,Man,and Cybernetics,Part B:Cybernetics,2000,30(4):501-509.
  • 6KENNEDY J ,EBERHART R C.Particle swarm optimization[C]//In Proceeding of IEEE International Conference on Neural Networks.Perth Australia:[s.n.],1995,IV:1 942-1 948.
  • 7FRAN VAN DER BERGH.An Analysis of Particle Swarm Optimizers [D].Pretoria:Natural and Agricultural Science Department University of Pretoria,2001.
  • 8黄艳新,周春光,杨国慧,郑岩.基于粗糙集的茶饮料味觉信号识别[J].吉林大学学报(信息科学版),2002,20(3):73-77. 被引量:6

二级参考文献6

  • 1张文芸, 安彦刚志, 渡部俊一郎,等.SPV法とイオンセンサを用いた高安定なお茶味检出[J].Trans IEE of Japan,1998,118-E(12):608-613.
  • 2Nguyen H S,Skowron A. Quantization of Real Values Attributes,Rough Set and Reasoning Approaches[EB/OL].Proc of the Second Joint Annual Conference on Information Sciences,Wrightsville Beach,North Carolina, USA,1995,34-37.http:∥citeseer.nj.com/nguyen95quantization.html,1995-09-28.
  • 3Hu Xiaohua. Knowledge Discovery in Databases: An Attribute-Oriented Rough Set Approach[EB/OL]. Regina University of Regina, 1995. http:∥tiger.ees.kyushu-u.ac.jp/~hu/Reference/hDthesis. html,1995-07.
  • 4李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 5周春光,梁艳春,田勇,胡成全,孙新.基于模糊神经网络味觉信号识别的研究[J].计算机研究与发展,1999,36(4):401-409. 被引量:14
  • 6陈云化,叶东毅,赵士亮.基于粗糙集理论的规则提取算法的研究[J].福州大学学报(自然科学版),2001,29(4):46-48. 被引量:6

共引文献5

同被引文献30

  • 1徐泽柱,王林.基于粗糙集理论和BP神经网络的数据挖掘算法[J].计算机工程与应用,2004,40(31):169-172. 被引量:16
  • 2李陶深,韩婷.一种基于粗集理论与神经网络的综合数据挖掘算法[J].广西大学学报(自然科学版),2004,29(3):211-213. 被引量:5
  • 3姜爱国,王雪.车轮踏面擦伤的集成粗糙神经网络预示诊断[J].清华大学学报(自然科学版),2005,45(2):170-173. 被引量:5
  • 4Nii O.Attoh-Okine.Combining Use of Rough Set and Artificial Neural Networks in Doweled-Pavement-Performance Modeling-A Hybrid Approach.Journal of Transportation Engineering,2002;128(3).
  • 5Jelonek J et al.Rough set Reduction of Attributes and Their Domains for Neural Network.Computational Intelligence,1995;11(2).
  • 6Yahia M E,Mahmod R,Sulaiman N,et al.Rough Neural Expert Systems.Expert Systems With Applications,2000;18(1).
  • 7Lingras P.Comparison of Neofuzzy and Rough Neural Networks.Journal of Information Sciences,1998.
  • 8Lingras P.Rough Neural Networks.Proceedings of the Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based System.Granada,Spain:1996.
  • 9Chung Young-June,Jun Hyo-Byung,Sin Kwee-Bo.A Study on the Structure Optimization of Multilayer Neural Networks Using Rough Set Theory.Transactions of the Korean Institute of Electrical Engineers,1999;48(1).
  • 10Lazar Alina,Sethi Ishwar K.Decision Rule Extraction From Trained Neural Networks Using Rough Sets.Intelligent Engineering System Through Artificial Neural Networks,1999.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部