期刊文献+

饱和土动力学有限元分析的改进稳定分步算法 被引量:2

A modified stabilized fractional-step algorithmfor finite element analysis in saturated soil dynamics
下载PDF
导出
摘要 基于Biot理论,控制饱和变形多孔介质中固相位移u和孔隙压力pw演变的场方程的空间半离散化导致u-pw型混合有限元方程。在固体颗粒和孔隙液体不可压缩以及零渗透性情况下,基本未知量u,pw的近似插值函数必须满足Babuska-Brezzi条件或者与之等价的Zienkiewicz和Taylor分片试验。采用相同低阶u-pw插值的有限元(如线性三角形单元和双线性四边形单元)不能满足B-B条件。分步算法作为一种稳定技术的引入可以绕开B-B条件,但现有分步算法在瞬态问题中仍存在虚假数值振荡和不稳定现象。本文在现有分步算法的基础上引入迭代过程,有效地缓解和克服了数值振荡现象,使低阶u-pw单元得以正常应用。应用双线性四节点u-pw单元的数值结果表明了所提出的包含迭代过程的改进分步算法的有效性。 Based on the Biot theory, the semi-discretization procedure of the field equations governing evolutions of the displacements u of the solid skeleton and the pore water pressure p_w in deforming saturated porous media results in the u-p_w mixed finite element formulations. In the limit of in compressibility of water and soil grains and zero permeability, the interpolation approximations for the primary variables u and p_w have to fulfill either the Babuska-Brezzi condition or the patch test proposed by Zienkiewicz and Taylor. It is known that the use of elements with equal low order interpolation for u and p_w fails to satisfy the above requirements. The fractional step algorithm introduced as a stabilization technique can circumvent the restrictions to the interpolation functions imposed by the Babuska-Brezzi condition. However, numerical results given by the existing fractional step algorithm show that the spurious oscillation and instability phenomenon in time step integration process still may occur for dynamic problems. A modified version of fractional step algorithm is proposed in the present paper by the introduction of a simple iteration procedure into the existing fractional step algorithm. The numerical difficulties mentioned above can be then effectively alleviated and even eliminated to allow the use of equal low order elements with success for dynamic problems. The numerical results demonstrate the effectiveness and good performance of the proposed modified version of fractional step algorithm.
出处 《计算力学学报》 CAS CSCD 北大核心 2004年第3期277-284,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(19832010 50278012) 国家973项目(2002CB412709)资助项目.
关键词 土动力学 分步算法 迭代 不排水条件 不可压缩性 soil dynamics fractional-step algorithm iteration procedure undrained condition incompressibility
  • 相关文献

参考文献8

  • 1Zienkiewicz O C, Qu S, Taylor R L, et al. The patch test for mixed formulation[J]. Int J for Numerical Methods in Engineering, 1986,23:1871-1883.
  • 2Zienkiewicz O C, Paul D K, Chan A H. Uncondi-tionally stable staggered solution procedure for soil-pore fluid interaction problems[J]. Int J for Numerical Methods in Engineering, 1988,26:1039-1055.
  • 3Chorin A J. Numerical solution of incompressibleflow problem[J].Studies Numer Anal,1968,2:64-71.
  • 4Yovanovich M M. Finite element analysis of in-compressible flow incorporation equal order press-ure and velocity interpolation[A]. Proceedings-Frontiers in Education Conference[C].USA: John Wiley and Sons,1978:89-102.
  • 5Pastor M, Li T, Liu X, et al. Stabilized low-order finite elements for failure and localization problem in undrained soils and foundations[J]. Computer Methods in Applied Mechanics and Engineering, 1999,174:219-234.
  • 6Zienkiewicz O C, Huang M, Wu J, et al. A new algorithm for the coupled soil-pore fluid problem[J]. Shock Vib, 1993,1:3-14.
  • 7Zienkiewicz O C, Codina R, Morgan K, et al. A general algorithm for compressible and incompress-ible flow, Part I: The split characteristic based scheme[J]. Int J for Numerical Methods in Fluids,1995,20:869-885.
  • 8Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media; the generalized BIOT formulation and its numerical solution[J]. Int J for Numerical and Analytical Methods in Geomechanics, 1984,8:71-96.

共引文献1

同被引文献16

  • 1BIOT M A.Theory of elasticity and consolidation for porous anisotropic solid[J].J Appl Phys,1955,26:182-185.
  • 2ZIENKIEWICZ O C,CHAN C T,BETTESS P.Drained,undrained,consolidating dynamic behaviour assumptions in soils[J].Geotechnique,1980,30:385-395.
  • 3ZIENKIEWICZ O C,CHAN A H C,PASTOR M.Static and dynamic behavior of soils:a rational approach to quantitative solutions.Ⅰ:Fully saturated problems[J].Proc R Soc Lond,1990,429A:285-309.
  • 4CHAPELLE D,BATHE K J.The inf-sup test[J].Computers & Structures,1993,47(4-5):537-545.
  • 5MIRA P,PASTOR M.A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems[J].Comput Meth Appl Mech Engrg,2003,192(6):4257-4277.
  • 6PASTOR M,Li T,LIU X,et al.A fractional step algorithm allowing equal order of interpolation for coupled analysis of saturated soil problems[J].Mech Cohes Frict Mater,2000(5):511-534.
  • 7LI Xi-kui,HAN Xian-hong,PASTOR M.An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics[J].Comput Meth Appl Mech Engrg,2003,192(6):3845-3859.
  • 8Biot M A. Theory of elasticity and consolidation for porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2): 182-185.
  • 9ZIENKIEWICZ O C, CHAN C T, BETTESS R Drained, undrained, consolidating dynamic behaviour assumptions in soils[J]. Geotechnique, 1980, 30: 385-395.
  • 10ZIENKIEWICZ O C, CHAN A H C, PASTOR M. Static and dynamic behavior of soils: a rational approach to quantitative solutions. I. Fully saturated problems[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1990, 429: 285-309.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部