期刊文献+

用于超弹性分析的高效杂交应变——EAS固体壳单元的研究

Research of robust hybrid strain-EAS solid shell element for hyperelastic analysis of shells
下载PDF
导出
摘要 提出了一个用于橡胶材料分析的弱变分方程,基于一个可压缩Neo-Hookean模型,将EAS模式和杂交元法有机地结合起来,推导了一个高效、稳定的杂交应变——EAS固体壳单元,通过巧妙地选择应变插值函数和本文中提出的一个精化措施,克服了橡胶材料所表现出的大应变超弹性本构为杂交元正交化法的实施所带来的困难,保证了整个单元列式都仅采用低阶高斯积分,显著提高了计算效率,确保橡胶材料不可压缩性计算的顺利进行,并克服了固体壳元的厚度自锁问题。 A weaker variational procedure is proposed for the large strain analysis of rubber components confining to compressible and incompressible hyperelastic materials of the Neo-Hookean type. The enhanced assumed strain (EAS) modes are incorporated into the hybrid-strain formulation and a robust and stable hybrid strain solid shell element is developed. A refined method is presented and the assumed strain modes are selected, so that the orthogonality between the lower and higher order assumed strain modes is realized. The salient feature of the orthogonality for higher computational efficiency is that the higher order assumed strain modes vanish at the sampling points of the second order quadrature and their energy products with the displacement-derived covariant strain can be programmed without resorting to numerical integration. The whole formulation uses only the second order quadrature, the computational efficiency can be improved and the incompressible locking of hyperelastic materials can be overcome. The formulation overcomes the thickness locking of the solid shell elements, and its efficacy is illustrated by popular benchmark problems.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2004年第3期308-313,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金重点项目(50135030) 面上项目(10072026) 江苏省自然科学基金(BK2002090)资助项目.
关键词 超弹性 杂交固体壳 厚度自锁 变分原理 稳定 Elasticity Integration Rubber Solids Stability Strain
  • 相关文献

参考文献10

  • 1Crisfield M A. Non-linear Finite Element Analysis of Solids & Structures[M]. Advanced Topics. John Wiley & Sons, 1997.
  • 2Betsch P, Gruttmann F, Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains[J]. Comput Methods Appl Mech Engrg, 1996,130:57-79.
  • 3Schieck B, Pietraszkiewicz W, Stumpf H. Theory and numerical analysis of shells undergoing large elastic strains[J]. Int J Solids Struct,1992,29:689-709.
  • 4Hauptmann R, Schweizerhof K, Doll S. Extension of the 'solid-shell' concept for application to large elastic and large elastoplastic deformations[J]. Inter J Numer Methods Engrg,2000,49:1121-1141.
  • 5Park H C, Cho C, Lee S W. An efficient assumed strain element model with 6 dof per node for geometrically nonlinear shells[J]. Inter J Numer Methods Engrg,1995,38:4101-4122.
  • 6Hauptmann R,Schweizerhof K. A systematic devel-opment of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom[J]. Inter J Numer Methods Engrg,1988,42:49-69
  • 7Sze K Y, Yao L Q. A hybrid-stress ANS solid-shell element and its generalization to smart structure modeling-part I: solid-shell element formulation[J]. Inter J Numer Methods Engrg,2000,48:545-582.
  • 8Zheng Shijie, Chen Wanji. Geometrically nonlinear generalized hybrid element and refined element method for non-conforming modes[J]. Acta Mechanica Sinica,1995,11(2):178-185.
  • 9Bücher N, Ramm E, Roehl D. Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept[J]. Inter J Numer Methods Engrg,1994,37:2251-2568.
  • 10Simo J C, Fox D D, Rifai M S. On a stress resultantgeometrical exact shell model. PartⅢ: Computa-tional aspects of the nonlinear theory[J]. Comput Methods Appl Mech Engrg,1990,79:21-70.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部