期刊文献+

基于人工神经网络的热轧带钢热流密度预测 被引量:3

Prediction of Heat-Flow Density for Hot-Rolled Strip Based on Artificial Neural Networks
下载PDF
导出
摘要 采用BP神经网络与数学模型相结合的方法对热带精轧机组机架间水冷区带钢热流密度进行预测,进而优化了机架间冷却的数学模型。结果表明,利用BP神经网络得出的带钢热流密度计算的终轧温度与实测值的标准差比原来仅用数学模型的传统算法减少了14 08%,故该方法具有较好的在线应用前景。 The hot strip heat-flow density in interstand water cooling zones of finishing mill was predicted by mathematical model combined with BP neural network for optimization of the model of interstand cooling. The standard deviation between the predicted and measured finishing temperature was reduced by 14.08 %. The method can be used for on-line prediction.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2004年第3期75-78,共4页 Journal of Iron and Steel Research
基金 国家自然科学基金资助项目(59995440)
关键词 机架间冷却 BP神经网络 数学模型 热流密度 终轧温度 热轧 带钢 interstand cooling BP neural network mathematical model heat-flow density finishing temperature hot rolling strip
  • 相关文献

参考文献9

二级参考文献17

共引文献77

同被引文献16

  • 1徐远芳,周旸,郑华.基于MATLAB的BP神经网络实现研究[J].微型电脑应用,2006,22(8):41-44. 被引量:41
  • 2褚辉,赖惠成.一种改进的BP神经网络算法及其应用[J].计算机仿真,2007,24(4):75-77. 被引量:53
  • 3[3]Hand D,Mannila H,Smyth P.数据挖掘原理[M].张银奎,廖丽,宋俊,等译.北京:机械工业出版社,2003.
  • 4[2]Hsu K,Cupta H V,Sonoshiam.Artificial neural network modeling of the rainfall run off process[J].Water Research,1995,31(10):2517-2530.
  • 5MOORE M M,Real-world applications for brain-computer interface technology[J].IEEE Transactions On Neural Systems Rehabilitation Engineering,2003,11(2):162-165.
  • 6SCHALK Gerwin,MCFARLAND Dennis J.HINTER-BERGER Thilo.BCI2000:AGeneral-purpose brain-compurer interface(BCI)system[J].IEEE Trans.on Biomedical Engineering,2004,51(6):1034-1043.
  • 7LEEB Robert,PFURTSCHELLER Gert.Walking through a virtual city by thought[C]//Proceedings of the 26th Annual International Conference of the IEEE EMBS.san Francisco:IEEE,2004(9):1-5.
  • 8FUJITA S,HOSOKAWA N,SHIBUYA Y.Experimental investigation of high frequency voltage oscillations in transformer winding[J].IEEE Trans.on Power Delivery,1998,13(4):1201-1207.
  • 9MATTHIAS K,PETER M,ULF G.BCI competition 2003-data set IIb:Support vector machines for the P300 speller paradigm[J].IEEE Trans.on Biomedical Engineering,2004,51(6):696-701.
  • 10MOHAMED D,AHMED A A.A new algorithm for EEG feature classification using mutual information[M].[S.l.]:IEEE,2001.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部