期刊文献+

解非线性方程组的一类多重分裂加性Schwarz算法

A Kind of Multisplitting Schwarz Algorithms for Solving System of Nonlinear Equations
下载PDF
导出
摘要 讨论求解一类非线性方程组的多重分裂加性Schwarz算法和两水平多重分裂加性Schwarz算法,分析其收敛性和收敛速度并建立了收敛性理论.这类算法结合多重分裂和加性Schwarz算法,具有很好的并行性能,因而特别适合于并行计算.数值算例证实了算法的有效性. A multisplitting additive Schwarz algorithm and a two-level multisplitting additive Schwarz algorithm were presented to solve a system of nonlinear equation sets. The convergence and the convergent rate were analyzed and some convergent theories were established. These kind of algorithms, combining multisplitting and additive Schwarz algorithms, could be easily applied to parallel computation. Several numerical examples were given to verify the effectiveness of the proposed method.
作者 曾金平 周茵
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第3期90-93,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金项目(No.10371035) 教育部优秀教师资助项目(No.[2002]350)
关键词 多重分裂 SCHWARZ算法 收敛性 并行算法 非线性方程组 multisplitting Schwarz algorithms convergence parallel algorithms
  • 相关文献

参考文献8

  • 1GRIEBEL M, OSWALD P.Remarks on the abstract theory of additive and multiplicative schwarz algorithms[J].Numerische Mathematik, 1995, 70(2):163-180.
  • 2FROMMER A, SZYLD D B. On asynchronous two-stage iterative methods[J].Numerische Mathematik, 1994,69(2):141-153.
  • 3ROMMER A, SCHWANDT H. A unified representation and theory of algebraic additive schwarz and multiplitting methods[J].SIAM Journal on Matrix Analysis Applications, 1997, 18(4):893-912.
  • 4ROMMER A, MAYER G. Convergence of relaxed parallel multisplitting methods[J].Linear Algebra and Its Applications,1989, 119:141-152.
  • 5SZYLD D B, JONES M. Two-stage and multisplitting methods for the solution of linear systems[J].SIAM Journal on Matrix Analysis Applicastions, 1992, 13(2):671-679.
  • 6ORTEGA J M, RHEINBOLDT W C. Iterative solution of nonlinear equations in several variables[M].New York: Academic Press, 1970.
  • 7BERMAN A, PLEMMONS R. Nonnegative matrices in the mathematical sciences[M].New York:Academic Press, 1979.
  • 8李庆扬 莫孜中 祁立群.非线性方程组的数值解法[M].北京:科学出版社,1999..

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部