期刊文献+

液体导弹发动机马尔可夫链和RBF网络辨识方法研究 被引量:1

Identification Approach for Liquid Missile Engine Based on Markov Chain and RBF Neural Networks
下载PDF
导出
摘要 分析了液体导弹发动机辨识方法 ,对基于马尔可夫链和RBF神经网络的液体导弹发动机的辨识原理和方法进行了较详细的叙述 ,依据某型液体导弹发动机实际测试数据 ,对其进行了仿真研究 ,并对仿真结果进行了比较分析。结果表明 ,基于动态系统马尔可夫链的液体导弹发动机的辨识方法优于基于RBF神经网络的辨识方法。 For improving identification approach of liquid missile engines, we deem it necessary to study the methods of identification approach. In this paper the two methods based on Markov chain and RBF neural networks are considered. We have derived eqs. (1) through (6) to describe the first order Markov model for the dynamic system, and then we describe the second order Markov model with eqs. (7) and (8). We also have derived eqs. (9) and (10) to describe the identification approach for aviation engine based on RBF neural networks. Figs.1 and 2 show the structure of first order Markov model, and Fig.3 shows a RBF neural networks. The real testing data of some liquid missile engine are used to analyse the two methods. Figs. 4,5,6,and 7 show the simulation results. The results illustrate that the identification approach on Markov model is more effective than that on RBF neural networks.
出处 《导弹与航天运载技术》 北大核心 2004年第2期7-10,共4页 Missiles and Space Vehicles
关键词 液体导弹发动机 马尔可夫链 RBF网络 辨识 Liquid missile engines Markov Chain RBF Neural Network Identification
  • 相关文献

参考文献2

二级参考文献5

共引文献13

同被引文献37

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部