期刊文献+

二维对流反应方程的高精度多重网格方法

HIGH ACCURACY MULTIGRID SOLUTION OF THE TWO-DIMENSIONAL CONVECTION REACTION EQUATION
下载PDF
导出
摘要 利用一阶偏导数项的四阶紧致差分算子,直接推导出了数值求解二维对流反应方程的一种新的高精度紧致差分格式。为了提高差分方程的求解效率,采用多重网格加速技术,建立了与之相适应的多重网格V循环算法。数值实验结果验证了本文方法的精确性和可靠性。 Making use of the fourth-order compact difference formula of the first derivative term, a new high accuracy difference scheme for the two-dimensional convection reaction equation is proposed. A multigrid accelerating technique is preseoted to overcome the difficulties of traditional relaxation methods and a fast solution is obtained. Numerical results prove its accuracy and dependability.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2004年第3期402-404,共3页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.70371011) 上海理工大学创新基金
关键词 二维对流反应方程 多重网格方法 紧致差分格式 对流扩散 CDR 高精度紧致格式 convection reaction equation compact difference scheme high accuracy multigrid
  • 相关文献

参考文献12

  • 1Idelsohn S, Nigro N, Storti M, et al. A Petrov-Galerkin Formulation for Advection-Reaction-Diffusion Problems.Comput. Appl. Meth. Eng., 1996, 136:27-46
  • 2Sheu W H T, Shiah H Y. The Two-Dimensional Streamline Upwind Scheme for the Convection-Reaction Equation. Int. J. Numer Meth. Fluids, 2001, 35:575-591
  • 3Gupta M M, Manohar R P, Stephenson J W. A Single Cell High Order Scheme for the Convection-Diffusion Equation with Variable Coefficients. Int. J. Numer Methods Fluids, 1984, 4:641-651
  • 4Gupta M M, Kouatchou J, Zhang J. A Compact Multigrid Solver for Convection-Diffusion Equations. J. Comput. Phys., 1997, 132:123-129
  • 5Zhang J. Accelerated Multigrid High Accuracy Solution of the Convection-Diffusion Equation with High Reynolds Number. Numer Methods Partial Differential Equations,1997, 13:77-92
  • 6Ge L X, Zhang J. High Accuracy Iterative Solution of Convection Diffusion Equation with Boundary Layers on Nonuniform Grids. J. Comput. Phys., 2001, 171: 560-578
  • 7Brandt A. Multi-Level Adaptive Solution to BoundaryValue Problems. Math. Comput., 1977, 31:333-390
  • 8Wesseling P W. An Introduction to Multigrid Methods.Chichester: Wiley and Sons, 1992
  • 9Gupta M M, Kouatchou J, Zhang J. Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers. J. Comput. Phys., 1997, 132:226-232
  • 10Zhang J. Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation. J. Comput.Phys., 1997, 143:449-461

二级参考文献11

  • 1田振夫.求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(2):109-114. 被引量:11
  • 2哈克布思W.多重网格方法[M].北京:科学出版社,1988..
  • 3Bickly W C. Finite difference formula for the square lattice[J]. Quart J Meth Appl Math, 1948, 1: 35~42.
  • 4Manohar R, Stephenson J W. Optimal finite analytic methods[J]. J Heat Transter, 1982, 104: 432~437.
  • 5Birkoff G, Lynch R E. Numerical Solution of Elliptic Problems[M]. Philadelphia: SIAM, 1984, 87~89.
  • 6Manohar R, Stephenson J W. High order difference schemes for linear partial differential equation[J]. SIAM J Sci Stat Comput, 1984, 5(1): 69~77.
  • 7Zhang Jun. A cost-effective multigrid projection operator[J]. J Comput Appl Math, 1996, 76: 325~333.
  • 8Zeeuw P M. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver[J]. J Com-put Appl Math, 1990, 33: 1~13.
  • 9Gupta M M, Kouatchou J, Jun Zhang. Comparison of second and four-order discretizations for multigrid Poisson solvers[J]. J Comput Phys, 1997, 132: 226~232.
  • 10Brandt A. Multi-level adaptive solution to boundary -value problems[J]. Math Comput, 1977, 31: 333~390.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部