期刊文献+

六方InN薄膜的载流子输运特性研究 被引量:2

Carrier transport characteristics in hexagonal InN thin films
原文传递
导出
摘要 通过变温 (10— 30 0K)暗电流特性研究了射频磁控溅射法生长在半绝缘GaAs (111)衬底上的六方InN薄膜的载流子输运过程 .在晶界势垒模型的基础上 ,发现InN薄膜的电导特性取决于材料内部的晶界势垒高度 ,载流子输运特性是由于空穴在晶界处的积累决定的 .从获得的InN薄膜晶界势垒高度 ,可以估算出InN薄膜内的缺陷浓度 ,结果与显微拉曼散射实验结果相一致 ,这进一步说明了晶界势垒模型适用于描述InN中的载流子输运特性 . The dark current characteristics of hexagonal InN thin films grown by rf magnetron sputtering on semi-insulating GaAs (111) substrates have been investigated systematically at different temperatures from 10 K to room temperature. The carrier transport characteristics of the InN thin films have been explained successfully on the basis of a grain-boundary barrier model, where the accumulation of holes at the grain boundaries has been found to play a key role. From the yielded height of the grain-boundary barrier, we can estimate the trap concentration in the InN thin films, which are in agreement with the micro-Raman results. The results give clear evidence that the grain-boundary barrier model can be used to interpret the carrier transport characteristics in InN thin films.
作者 潘葳 沈文忠
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第5期1501-1506,共6页 Acta Physica Sinica
基金 国家杰出青年基金 (批准号 :NSFC10 12 5 416)资助的课题~~
关键词 氮化铟薄膜 载流子输运 晶界势垒模型 拉曼散射 InN thin films, carrier transport characteristics, grain-boundary barrier model, Raman scattering
  • 相关文献

参考文献27

  • 1Strite S and Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237
  • 2Nakamura S, Senoh M, Nagahama S, Iwase N, Yamada T,Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl.Phys. 35 L74
  • 3Akasaki I, Sota S, Sakai H, Tanaka T, Koike M and Amano H 1996 Electron. Lett. 32 1105
  • 4Starikov E, Shiktorov P, Gruzinskis V, Reggiani L, Varani L,Vaissière J C and Zhao H 2002 Physica B 314 171
  • 5Starikov E, Shiktorov P, Gruzinskis V, Reggiani L, Varani L,Vaissière J C and Zhao H 2002 Mater. Sci. Forum 384 205
  • 6QianZ G, Shen W Z, Ogawa H and Guo Q X 2002 J. Appl.Phys. 92 3683
  • 7Inushima T, Mamutin V V, Vekshin V A, Ivanov S V, Sakon T,Motokawa M and Ohoya S 2001 J. Cryst. Growth 227 - 228 481
  • 8Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V , Bechstedt F , Furthmuller J , Harima H , Mudryi A V ,Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B229 R1
  • 9Tansley T L and Foley C P 1986 J. Appl. Phys. 59 3241
  • 10Yang H F, Shen W Z, Qian Z G, Pang Q J, Ogawa H and Guo QX 2002 J. Appl. Phys. 91 9803

同被引文献94

  • 1Davydov V Yu, Klochikhin A A, Seisyan R P et al 2002 Phys. Stat. Sol. (b) 229 R1
  • 2Wu J, Walukiewicz W, Lu H et al 2002 Appl. Phys. Lett. 80 4741
  • 3Wu J, Walukiewicz W, Yu K M et al 2002 Appl. Phys. Lett. 80 3967
  • 4Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237
  • 5Bhuiyan A G, Ha.shimoto A, Yamamoto A 2003 J. Appl. Phys. 94 2779
  • 6Lebedev V, Cimalla V, Baumann T et al 2006 J. Appl. Phys. 100 094903
  • 7Cimalla V, Lebedev V, Morales F M et al 2006 Appl. Phys. Lett. 89 172109
  • 8Piper L F, Veal T D, McConville C F et al 2006 Appl. Phys Lett. 88 252109
  • 9Xie Z L, Zhang R, Liu B et al 2007 J. Crystal Growth. 298 409
  • 10Liu B, Zhang R, Xie Z L et al 2008 J. Appl. Phys. 103 023505

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部