摘要
介绍了采用Runge Kutta法求解二阶微分方程组的方法,并用于悬架系统弹性元件、减振元件非线性的5自由度车辆动力学系统的求解 对简化的非线性和线性两种车辆动力学系统情况进行了建模和仿真,表明采用等效线性法的系统性能评价产生较大的误差 对于目前汽车悬架系统广泛采用的非线性弹性元件和减振元件,必须采用非线性技术对系统进行分析与评价
Runge-Kutta method is used in solving second-order differential equations for simulating a non-linear vehicle dynamic system of five freedoms. Numerical simulations are carried out for effective linear and non-linear dynamic systems simplified from certain vehicles. It shows that effective linear simplification for non-linear dynamic system produces error for vehicle evaluation. For modern vehicle suspension systems with non-linear springs and shock absorbers, non-linear numerical simulation is effective. The performance evaluation and numerical simulation software for the dynamic system of non-linear suspension developed by authors are also introduced.
出处
《江苏大学学报(自然科学版)》
EI
CAS
2004年第3期216-219,共4页
Journal of Jiangsu University:Natural Science Edition
基金
江苏省汽车工程重点实验室基金资助项目(K2091)
关键词
车辆悬架
非线性
动力学
数值模拟
vehicle suspension
nonlinear
dynamic system
numerical simulation