摘要
通过差分方法对Logistic方程离散化,利用稳定性理论、李雅普诺夫指数方法对该离散系统进行动力学行为的研究,在研究中发现该系统随着参数的变化既有混沌解,也有孤立子解 通过特殊的反馈控制,将混沌解控制到孤立子解上,利用李雅普诺夫指数小于0,证明了系统的稳定性,从而从理论上实现孤立子控制 并且利用Matlab软件进行数值仿真。
Logistic equation is discretized through finite difference method. By applying the stability theory and Lyapunov's index method, the dynamic behavior of this discretized system is investigated. The chaos solution and soliton solution with changing parameters are found. Through special feedback control, it can control the chaos solution into the soliton solution. By utilizing (Lyapunov's) indexes to be smaller than 0, systematic stability can be proved. Thus soliton control can be realized theoretically. By si-(mulation) through Matlab software, the soliton control can be realized numerically.
出处
《江苏大学学报(自然科学版)》
EI
CAS
2004年第3期228-231,共4页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(10071033)
江苏省自然科学基金资助项目(BK2002003)
关键词
常微分方程
混沌
孤立子
反馈控制
ordinary differential equation
chaos
soliton
feedback control