期刊文献+

Logistic方程中的孤立子及其控制 被引量:1

Soliton of Logistic equation and its control
下载PDF
导出
摘要 通过差分方法对Logistic方程离散化,利用稳定性理论、李雅普诺夫指数方法对该离散系统进行动力学行为的研究,在研究中发现该系统随着参数的变化既有混沌解,也有孤立子解 通过特殊的反馈控制,将混沌解控制到孤立子解上,利用李雅普诺夫指数小于0,证明了系统的稳定性,从而从理论上实现孤立子控制 并且利用Matlab软件进行数值仿真。 Logistic equation is discretized through finite difference method. By applying the stability theory and Lyapunov's index method, the dynamic behavior of this discretized system is investigated. The chaos solution and soliton solution with changing parameters are found. Through special feedback control, it can control the chaos solution into the soliton solution. By utilizing (Lyapunov's) indexes to be smaller than 0, systematic stability can be proved. Thus soliton control can be realized theoretically. By si-(mulation) through Matlab software, the soliton control can be realized numerically.
作者 许刚 田立新
出处 《江苏大学学报(自然科学版)》 EI CAS 2004年第3期228-231,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033) 江苏省自然科学基金资助项目(BK2002003)
关键词 常微分方程 混沌 孤立子 反馈控制 ordinary differential equation chaos soliton feedback control
  • 相关文献

参考文献12

  • 1Li T Y,Yorke J A.Periodic three implies chaos[J].Amer Math Monthly,1975,82: 85-992.
  • 2Baillieul J,Brockett R W,Washburn R B.Chaotic motion in nonlinear feedback systems[J].IEEE Trans on Circuits and Systems,1980,27(1): 990-997.
  • 3Sparrow C T.Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[J].Math Anal and Applies,1983,83(1): 275-291.
  • 4Gorzalek M J.Some observations on chaotic motion in single loop feedback systems[A].In:Proc 25th IEEE Conf on Decision and Control[C].Athnes,1986,588-589.
  • 5丁丹平,田立新.特殊系统的混沌轨道引导控制[J].江苏理工大学学报(自然科学版),2001,22(1):84-88. 被引量:7
  • 6丁丹平,田立新.映射系统的轨道引导控制[J].江苏理工大学学报(自然科学版),2001,22(5):82-85. 被引量:5
  • 7Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rew Lett,1990,64:1169-1199.
  • 8Vakhnenko V O.High-frequency soliton-like waves in a relaxing medium[J].J Math Phys,1999,40: 2011-2020.
  • 9Morrison A J,Parkes E J.The N-soliton solution of a generalized Vakhnenko equation[J].Glasgow Math J,2001,43A: 65-90.
  • 10Morrison A J,Parkes E J.The N-soliton solution of the modified generalized Vakhnenko equation[J].Chaos,Solitons and Fractals,2003,16:13-26.

二级参考文献14

  • 1方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 2Roberto Camassa;Darryl D Holm.An integrable shallow water equation with peaked solitons,1993(13).
  • 3Alber M S;Camassa R.The geometry of peaked soliton and billiard solutions of a class of integrable PDE's,1994(02).
  • 4Clarkson P A;Mansfield E L;Priestley T J.Symmetries of a class of nonlinear third-order partial differential equations,1997(25).
  • 5Xin Zhou-ping;ZHANG Ping.On the weak solutions to a shallow water equation[J],2000(09).
  • 6Adrian Constantin;Waner A Atrauss.Stability of peakons[J],2000(10).
  • 7Adrian Constantin;Joachim Escher.Well-posedness,global existence and blown up phenomena for a periodic quasi-linear hyperbolic equation,1998(05).
  • 8TIAN Li-xin.Wavelet approximate inertial manifold in nonlinear solitary wave equation[J],2000(08).
  • 9Michael Fisher;Jeremy Schiff.The camassa Holm equation:Conserved quantities andThe initial value problem,1999(03).
  • 10TIAN Li·xin;LIUZeng-rong.P dissipative operator[J],1999.

共引文献11

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部