期刊文献+

基于在线Infomax算法的视觉诱发电位提取 被引量:5

EXTRACTION OF VISUAL EVOKED POTENTIALS BASED ON ON-LINE INFOMAX ALGORITHM
下载PDF
导出
摘要 在线信息极大 (Infomax)算法是基于单次观测样本的盲源分离算法 ,具有实时自适应跟踪混合系统的时变特性的能力。针对算法易出现稳态失调的问题 ,结合二阶和四阶统计去相关的混合学习规则 ,采用自适应步长学习技术 ,提出了一种改进的在线Infomax算法 ,并将其用于视觉诱发电位 (VEP)的实时提取。实验结果表明 ,该方法改善了原有算法的收敛性能 ,盲源分离效果良好 ,并可在减少视觉刺激次数的前提下 ,有效地实现VEP信号增强和参数提取。 On-line Information maximization(Infomax) algorithm is a kind of blind signal separation based on single observation sample, it can track the real-time change of mixing system adaptively. To overcome the problem of misadjustment in the steady state, an improved on-line Infomax algorithm with hybrid learning rule of 2nd order and 4th order statistical decorrelations, and adaptive step size technique is presented in this paper. This algorithm is applied to the real-time extraction of Visual Evoked Potentials(VEP). Simulation and application experiment results show that the proposed algorithm can improve the convergence performance and effect of blind signal separation. The reinforcing and parameter extraction of VEP can be realized effectively on the premise of fewer vision stimulations.
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2004年第2期97-102,共6页 Chinese Journal of Biomedical Engineering
关键词 在线Infonux算法 混合学习规则 自适应步长 视觉诱发电位 Algorithms Computer simulation Real time systems Statistical methods Vision
  • 相关文献

参考文献8

  • 1Hyvarinen A. Survey on independent component analysis[J]. Neural Computing Surveys. 1999,2:94-128.
  • 2Jung TP, et al. Analysis and visualization of single trial event-related potentials[J]. Human Brain Mapping,2001,14:166-185.
  • 3Makeig S, Anthony J, Bell TP, et al. Independent component analysis of electroencephalographic data[J]. In: Advances in Neural Information Processing Systems 8,1996,145-151.
  • 4Amari S. Natural gradient works efficiently in learning[J]. Neural Computation,1998,10(2):251-276.
  • 5Lee TW, Girolami M, Sejnowski T. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources[J]. Neural Computation, MIT Press, 1999,11(2):609-633.
  • 6Bert-Uwe Koehler, Lee TW, Orglmeister R. Improving the performance of infomax using statistical signal processing techniques[C]. Proc. 7th International Conference on Artificial Neural Networks, Lausanne, Switzerland,1997,535-540.
  • 7http://www.sccn.ucsd.edu/-scott
  • 8洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52

共引文献52

同被引文献49

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部