期刊文献+

基于人工神经网络的L9(3^4)正交实验预测特点研究 被引量:6

Forecasting Characters of L9(34) Orthogonal Test Based on the Artificial Neural Network
下载PDF
导出
摘要 用五组L9(34)正交实验结果作为训练学习样本集,通过人工神经网络对其预测特点进行了探讨.结果表明:完备的正交实验样本集是基本训练学习单元,不可分割,其预测结果与实测结果吻合很好.同一类型同一实验条件下,完备的信息量大的正交实验样本集通过人工神经网络能很好地预测其他完备的信息量小的正交实验样本集,这为正交设计提供了有意义的参考思路. Five sets of results for different L_9(3~4) orthogonal tests were used as the training-study samples, the forecasting characters of L_9(3~4) orthogonal test were researched on the basis of the artificial neural network. The results showed that the self-contained orthogonal sample collection was the basic training-studying cell and was indivisible. Their forecasting results were tallied with the test results. When others samples were added into the self-contained orthogonal samples or the self-contained orthogonal samples were reduced, the forecasting results would be completely irresponsible. Under the same test conditions and with the same orthogonal test type, the self-contained orthogonal sample containing large information could forecast other self-contained orthogonal samples with small information. It provides a significant novel test-design approach for the orthogonal test.
机构地区 东南大学机械系
出处 《应用科学学报》 CAS CSCD 2004年第2期228-232,共5页 Journal of Applied Sciences
基金 国家自然科学基金资助项目(59974011)
关键词 人工神经网络 正交实验 预测特点 样本集 材料性能 artificial neural network orthogonal test forecasting characters sample collection
  • 相关文献

参考文献9

二级参考文献23

  • 1王有明,孙国雄.灰铸铁性能预测的自适应模型法[J].铸造技术,1995,20(5):13-15. 被引量:4
  • 2焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995..
  • 3骆梅青
  • 4Clarke D W,Mohtadi C,Tuffs P S.Generalized predictive control: part 1 and part 2[J].Automatic,1987,23(2): 137~161
  • 5Kumpati S N,Kanna P.Identification and control of dynamical system using neural networks [J].IEEE Trans on Neural Networks,1990,(1): 4~27
  • 6Kzzyyzak A.Nonparametric estimation and classification using radial basis function nets and empirical risk minimization [J].IEEE NN,1996,7 (2): 475~487
  • 7Pantazopoulos K,Tsoukalas L H,Bourbakis N.Financial prediction and trading strategies using neurofuzzy approaches [J].IEEE SME (part B),1998,28 (4): 520~531
  • 8ASM,Metals Handbook(Volume Ⅰ)[M].Ninth Edition,Ohio:1978:112-145.
  • 9Chun M S,Biglou J,Lenard J G,Kim J G.Using neural networks to predict parameters in the hot working of aluminum alloys[J].Journal of Materials Processing Technology,86(1999):245-251.
  • 10Abhihit S Pandya.神经网络模式识别及实现[M].北京:电子工业出版社,1996:43.

共引文献17

同被引文献29

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部