期刊文献+

电子束固化环氧树脂的物理过程及固化厚度的分析 被引量:2

ANALYSIS ON PHYSICAL PROCESS OF ELECTRON BEAM CURING IN EPOXY RESIN AND CURED THICKNESS
下载PDF
导出
摘要 对环氧树脂电子束辐射固化的物理过程进行了分析,研究了辐射剂量、引发剂用量、树脂分子量及其分布,以及化学结构对固化厚度的影响。研究结果显示,环氧树脂体系在电子束辐射后形成围绕入射中心均匀扩展的固化区域,随着辐射剂量的提高,树脂辐射固化厚度的增加幅度变小。引发剂用量增加,辐射固化厚度呈现一种先上升后下降的趋势。提高辐射剂量,树脂分子量对固化厚度的影响减小,固化厚度的增加幅度与树脂的分子量分散性成反比。对于分子量相近而结构不同的环氧树脂,酚醛型环氧树脂在低辐射剂量下的固化区域较大,双酚A型环氧树脂的固化厚度随辐射剂量提高有较大幅度增加,脂环族环氧树脂的固化区域相对较小。 The physical process of electron beam curing in epoxy resin was analysed in the paper. The influences of radiation dose, initiator dosage, molecular weight and distribution of resin, and chemical structure of resin on radiation-cured thickness were studied. The experimental results show that the cured thickness increase with the increasing of radiation dose and the extent of variation are decreased. The thickness of cured field in the epoxy resin increases with the increasing of initiator dosage and decreases when the dosage of initiator exceeds the critical value. With the increasing of radiation dose, the effect of molecular weight of epoxy resin on cured thickness is weakened, and the increased extent of cured thickness is inverse proportion to the molecular weight distribution of resin. The cured thickness of epoxy resins is directly associated with their chemical structures. Phenolic epoxy resin exhibits a larger cured region under low radiation dose. When the radiation dose increases, an obvious increase of cured region appears in bisphenol A epoxy resin system. At the same time, the cured region in alicyclic epoxy resin is rather small.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2004年第3期163-167,共5页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(59833110)
关键词 电子束 环氧树脂 固化技术 双酚A 辐射剂量 温度 electron beam radiation curing epoxy resin physical process cured thickness
  • 相关文献

参考文献14

  • 1Crasto A S, Kim R Y, Rice B P. International SAMPE symposium and exhibition proceedings, 1997, 42 : 487-497.
  • 2Parrot P, His S, Boursereau F. International SAMPE symposium and exhibition proceedings. 1999, 44: 1354- 1358.
  • 3Abrams F, Tolle T B. International SAMPE symposium and exhibition proceedings, 1997, 42: 548-557.
  • 4Saunders C B. Lopata V, Barnard J, et al. Radiat.Phys. Chem., 2000, 57: 441-445.
  • 5Chappas W J. Devney B G. Olding R P, et al. Radiat.Phys. Chem.. 1999, 56: 417-426.
  • 6Singh A. Saunders C B, Barnard J W, et al. Radiat.Phys. Chem., 1996, 48: 153-170.
  • 7Sui G. Zhong W H, Zhang Z G. J. Mater. Sci. Technol., 2000, 16(6): 627-630.
  • 8Raghavan J, Baillie M R. Polym. Compos. , 2000, 21:619-629.
  • 9Beringer F M, Drexler M, Gindler E M, et al. J. Am.Chem.Soc.,1953,75(5): 2705-2708.
  • 10Crivello J V. Nucl. Instr. and Meth.. 1999, B151: 8-21.

二级参考文献1

共引文献4

同被引文献39

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部