摘要
许多网络拓朴结构是通过图的运算得到的.超边连通性是衡量网络可靠性的一个重要尺度.一个图G为最优-λ'图,如果其限制性边连通度λ'(G)等于其最小边度ζ(G).一个最优-λ'图被称为超-λ'图,如果从G中去掉任何一个最小限制性边割都会产生孤立边.考虑图的三类运算;证明了如果原始图为正则的最优-λ'图,则运算后的图是超一λ'图.
Many attractive network topologies can be obtained from graph operations. Super edge connectivity is an important measure of network reliability. A graph G is A'-optimal if the restricted edge connectivity A' (G) equals to the minimum edge degree ζ(G), and super-λ' if every minimum restricted edge cut of G isolates an edge. Three classes of graph operations are considered,and it is shown that if the original graphs are regular and λ'-optimal, then their operation results in a super-λ' graph.
出处
《郑州大学学报(理学版)》
CAS
2004年第2期1-6,共6页
Journal of Zhengzhou University:Natural Science Edition
基金
河南省自然科学基金资助项目,编号 10271101.