期刊文献+

一个微生物生态模型的周期解 被引量:6

PERIODIC SOLUTIONS OF A ECOLOGICAL MODEL OF MICROBES
原文传递
导出
摘要 研究一类与厌氧消化过程微生物生态模型有关的微分方程组,在非自治双曲情形扰动下,通过利用重合度的延拓定理,获得了该方程组周期解全局存在性的充分条件。 In this paper, a system of differential equations related to an ecological model of microbes in anaerobic digestion process is studied. In its nonautonomous perturbation, by using the continuation theorem of coincidence degree theory, some sufficient conditions for the global existence of periodic solutions of this system are obtained.
出处 《应用数学学报》 CSCD 北大核心 2004年第2期210-217,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(19971026号) 湖北省教育厅重大课题基金(20040Z001)
关键词 微生物 生态模型 周期解 延拓定理 重合度 微分方程组 Ecological model periodic solution nonlinear perturbation the continuation theorem topological degree theory
  • 相关文献

参考文献9

  • 1Mclnerneg M J, Bryant M P. Biomass Conversion Processes for Energy and Fuels. New York: PlenumPress, 1980
  • 2柯益华 孙学梅.厌氧消化过程的微生物生态模型[J].生物数学学报,1992,7(3):50-58.
  • 3陈兰荪,陈键.非线性生物动力系统.北京:科学出版社,1993(Chen Lansun, Chen Jian. Nonlinear Biological Dynamical Systems. Beijing: Science Press, 1993)
  • 4邓圣福,杨地莲,燕锐,张伟年.一个生态模型中的动力学[J].四川大学学报(自然科学版),2000,37(3):310-319. 被引量:7
  • 5邓圣福,张伟年.一个微生物生态模型分岔的周期轨[J].应用数学学报,2001,24(4):509-521. 被引量:2
  • 6Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin: SpringerVerlay, 1977
  • 7张芷分,丁同仁等,微分方程定性理论.北京:科学出版社,1985(Zhang Zhifen, et al. Qualitative Theory of Differential Equations. Beijing: Science Press, 1985)
  • 8叶彦谦等,极限环论.上海:上海科学技术出版社,1984(Ye Yanqian. Theory of Cycles. Shanghai: Shanghai Science and Technology, 1984)
  • 9黄克成.微分方程dx=h(y)—F(x),dy/dt=—g(x)的极限环的存在性[J].数学学报,1980,23(4):483-490.

二级参考文献8

  • 1陈兰荪,非线性生物动力学系统,1998年
  • 2伍炯宇,四川大学研究报告,1997年
  • 3柯益华,生物数学学报,1992年,3期,50页
  • 4袁晓凤,四川大学学报,1992年,3卷,373页
  • 5张芷芬,微分方程定性理论,1985年
  • 6张锦炎,常微分方程几何理论与分支问题,1981年
  • 7黄安基,曹登庆.Liénard方程极限环的存在性[J].应用数学和力学,1990,11(2):119-130. 被引量:3
  • 8邓圣福,杨地莲,燕锐,张伟年.一个生态模型中的动力学[J].四川大学学报(自然科学版),2000,37(3):310-319. 被引量:7

共引文献7

同被引文献22

  • 1柯益华 孙学梅.厌氧消化过程的微生物生态模型[J].生物数学学报,1992,7(3):50-58.
  • 2S Ahmad. On the nonalhonomous Volterra-Lotka compttition equatioms[J]. Proc Amer Nath Soc. 1993,117:199-210.
  • 3Li Yongkun. Periodic solutions of N-speecies competition system with time delays[J]. J Biomath.1997, 12(1) :1-18.
  • 4K Gopalsamy. Globally asymptotic stability in a periodic Lotka-Volterra system [J]. J Austral Math Soc. 1982, ser B 24:160.
  • 5L Erbe, W krawcewicz, Wu J. A composite coincidence degree with applications to boundary value problem of neutral equtions[J]. Trans Amer Math Soc , 1993,335:459-478.
  • 6K Gopalsamy. Stability and oscillation in delay differential equations of population dynamics[M].Mathematics and its Applications 74, Kluwer Academic, Dordrecht, 1992.
  • 7Zhang Jiye, Jin Xuesong. Global stability analysis in delayed Hopfield neural network models[J].IEEE Trans Neural Networks, 2000, 14(7):745-753.
  • 8Zhou Dongming, Zhang Liming, Cao Jinde. On global exponential stability of celleur neural network with Lipschitz-continuous activation and variable delays[J].Applied Mathematics and Computation, 2004, 151(2):379-392.
  • 9Dong Qinxi, Matsui K, Huang Xiankai. Existence and stability of periodic solutions for Hopfield neutral network equations with periodic input[J].Nonlinear Analysis, TMA, 2002, 49(4):471-479.
  • 10Guo Shangjian, Huang Lihong. Periodic solutions in an inhibitory two-neuron network[J].Journal of Computational and Applied Mathematics, 2003, 161(1):217-229.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部