期刊文献+

多元Stancu多项式的最优逼近阶及其特征刻画 被引量:7

OPTIMAL APPROXIMATION ORDER AND ITS CHARACTERIZATION FOR MULTIVARIATE STANCU POLYNOMIALS
原文传递
导出
摘要 对于单纯形上的多元 Stancu 多项式M_n(f,x)(它是多元 Bernstein 多项式的广义形式),我们给出其对连续函数的最优逼近阶及其特征刻画,即我们将依据某一 K-泛函确定满足||M_nf-f||=O(n^(-1))的函数类。同时,得到了逼近的正定理和逆定理。 For the multivariate Stancu polynomials M_n(f, x), which are generalization of the Bernstein polynomials defined on the simplex, the optimal approximation order and its characterization of these polynomials approximating the continuous functions will be given. That is, we will find the class of functions for which ||M_nf-f||=O(n^(-1)) in term of the behavior of a certain K-functional. Moreover, we also give the direct and converse theorems of approximation.
出处 《应用数学学报》 CSCD 北大核心 2004年第2期218-229,共12页 Acta Mathematicae Applicatae Sinica
基金 教育部科学技术研究重点基金(03142) 浙江省自然科学基金(102002)
关键词 单纯形 多元Stancu多项式 最优逼近阶 连续函数 Simplex stancu polynomials direct theorem inverse tneorem saturation
  • 相关文献

参考文献2

二级参考文献15

  • 1Stancu D. D., Proc. Conf. Math. Res. Inst. (Hammerlin G. ed.), Oberwolfach: 1981: 241-251.
  • 2Ditzian Z., Inverse theorems for multidimensional Bernstein operators, Pacific J. Math., 1986, 121: 293-319.
  • 3Ditzian Z., Best polynomial approximation and Bernstein polynomials approximation on a simplex, Indag.Math., 1989, 92: 243-256.
  • 4Berens H., Xu Y., K-moduli, moduli of smoothness, and Bernstein polynomials on a simplex, Indag. Math.,1991, N. S., 2: 411-421.
  • 5Ditzian Z., Zhou X. L., Optimal approximation class for multivariate Bernstein operators, Pacific J. Math.,1993, 158: 93-120.
  • 6Zhou D. X., Weighed approximation by multidimensional Bernstein operators, J. Approx. Theory, 1994, 76:403-412.
  • 7Zhou D. X., Converse theorems for multidimensional Kantorovich operators, Analysis Math., 1993, 19: 85-100.
  • 8Zhou D. X., Inverse theorems for multidimensional Bernstein-Durrmeyer operators, J. Approx. Theory, 1992,70: 68-93.
  • 9Berens H., Schmid H. J., Xu Y., Bernstein-Durrmeyer operators on a simplex, J. Approx. Theory, 1992, 68:247-261.
  • 10Zhang C. G., Asympotic expansion in Lp norm for multivariate Kantorovich operators, Acta Math. Sinica,1998, 41(6): 1239-1248 (in Chinese).

共引文献9

同被引文献33

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部