期刊文献+

数值求解中网格自适应加密和合并技术的研究 被引量:9

ADAPTIVE MESH REFINEMENT TECHNIQUE IN TWO DIMENSION IN NUMERICAL METHODS
原文传递
导出
摘要 In this paper, an adaptive mesh refinement technique is presented in numeri-cal solution of partial differential equations. Mainly including scanning function,refining/ derefine, and the method has been implemented based on unstructuregrid and in Lagrangian or in Eulerian. Results are very helpful to the study of thenumerical simulation of detonation and study of explosive performances. In this paper, an adaptive mesh refinement technique is presented in numeri- cal solution of partial differential equations. Mainly including scanning function, refining/ derefine, and the method has been implemented based on unstructure grid and in Lagrangian or in Eulerian. Results are very helpful to the study of the numerical simulation of detonation and study of explosive performances.
出处 《数值计算与计算机应用》 CSCD 北大核心 2004年第2期145-154,共10页 Journal on Numerical Methods and Computer Applications
基金 973(G1999032801) 国家自然科学基金(10271019) 中物院基金(2003Z0603)
关键词 数值求解 计算流体力学 网格 自适应加密 合并 Lagrangian Refinement/Derefinement Adaptive meshes
  • 相关文献

参考文献8

  • 1J.F.Thompson, Automatic numerical generation of body-fitted curvilinear coordinate systems for field containing any number of arbitrary two dimensional bodies. J. Comput. Phys. 15(1974) 299-319
  • 2Joe F. Thompson, A Reflection on Grid Generation in the 90s: Trends, Needs, and Influences.
  • 3J.F.Clarke, S.Karni, J.J.Quirk, P.L.Roe, L.G.Simmonds, And E.F.Toro., Numerical Computation of Two-Dimensional Unsteady Detonation Waves in High Energy Solids, J. Comput. Phys.,106(1993), 215-233.
  • 4Berger, M. J., and Oliger, J., Adaptive Mesh Refinement for Hyperbolic Partial Differential Equa tions, J. Comput. Phys., 53 (1984), 484-512.
  • 5Berger, M. J., and Colella, P., Local Adaptive Mesh Refinement for Shock Hydrodynamics, J.Comput. Phys., 82 (1989), 64-84.
  • 6J. K. Dukowicz, Conservative Rezoning (Remapping) for General Quadrilateral Meshes, J. ofComput. Phys. 1:54(1984), 411-424.
  • 7吴子牛.求解定常N-s方程的各项异性笛卡尔网格法研究[A]..第二届青年科技论文报告会论文集[C].北京计算流体力学讨论班,1996..
  • 8王瑞利.一种物理量重映方法的研究[J].数值计算与计算机应用,2002,23(4):296-302. 被引量:4

二级参考文献4

  • 1李岳生,胡日章.多元散乱数据的样条插值法[J].高等学校计算数学学报,1990,12(3):215-226. 被引量:13
  • 2水鸿寿.数值网格构造方法,理论及应用,第四届流体力学会议论文集[M].,1995..
  • 3蔡庆东.守恒重映中的基本概念及积分算法[J].计算物理实验室年报,1999,:103-122.
  • 4王瑞利.多元散乱数据的样条拟合,中山大学毕业论文[M].,1988..

共引文献3

同被引文献71

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部