期刊文献+

绿柱石高温高压相变 被引量:2

PHASE TRANSFORMATIONS OF BERYL AT HIGH PRESSURES AND HIGH TEMPERATURES
下载PDF
导出
摘要 利用单元六面顶压机,在≤5GPa 范围内对绿柱石进行了实验研究。结果表明,绿柱石在较低压力和高温下分解为硅铍石、金绿宝石和石英的混合物,在较高压力和高温下分解成硅铍石、蓝晶石和柯石英。前者体积收缩9.3%,后者体积收缩约15%。通过热力学方法计算了下列平衡反应:绿柱石=硅铍石+金绿宝石+5β-石英;2金绿宝石+3α-石英=2蓝晶石+硅铍石;2金绿宝石+3柯石英=2蓝晶石+硅铍石的平衡曲线。 By using a six anvil press, the phase behaviors of beryl at high pressure and high temperature was investigated at pressure up to 5 GPa. Beryl has been found to decompose into the mixture of hpenakite, chrysoberyl and quartz at lower pressures and high temperatures, with a decreasde in zero - pressure molar volume of about 9.3%, and into phenakite and kyanite plus coesite at higher pressures and high temperatures with a decrease in zero-pressure molar volume of about 15%. The phase equilibrium boundaries were calculated by the thermodynamic method for the following reactions:Berly=Phenakite+Chrysobery1+5β-Quartz 2Chrysobery1+3α-Quartz =2Kyanite +Phenakite 2 Chrysoberyl+ 3 Coesite =2 Kyanite+ Phenakite.
出处 《地质科学》 CAS CSCD 北大核心 1992年第A12期161-167,共7页 Chinese Journal of Geology(Scientia Geologica Sinica)
关键词 绿柱石 相变 高温 高压 Beryl, phase transformation, high -pressure and high-temperature
  • 相关文献

参考文献3

  • 1Robert M. Hazen,Larry W. Finger. High-temperature crystal chemistry of phenakite (Be2SiO4) and chrysoberyl (BeAl2O4)[J] 1987,Physics and Chemistry of Minerals(5):426~434
  • 2Robert M. Hazen. High-pressure crystal chemistry of chrysoberyl, Al2BeO4: Insights on the origin of olivine elastic anisotropy[J] 1987,Physics and Chemistry of Minerals(1):13~20
  • 3O. L. Kuskov,O. B. Fabrichnaya. The SiO2 polymorphs: The equations of state and thermodynamic properties of phase transformations[J] 1987,Physics and Chemistry of Minerals(1):58~66

同被引文献14

  • 1李海建,秦善,祝向平,刘景,李晓东,巫翔,吴自玉.电气石的原位高压X射线衍射研究[J].核技术,2004,27(12):919-922. 被引量:5
  • 2刘琰,邓军,蔡克勤,周彦,王庆飞,周应华,高帮飞,李德秀,徐福玉,朱悦荣.四川平武板状绿柱石矿物学特征及板状成因[J].地学前缘,2005,12(2):324-331. 被引量:11
  • 3Holland T J B,Redfern S A T. Unit Cell Refinement from Powder Diffraction Data:The Use of Regression Diagnostics [J]. Mineralogical Magazine, 1997,61 : 65-77.
  • 4Hazen R M. Comparative Crystal Chemistry and the Polyhedral Approach [J]. Reviews in Mineralogy, 1985,14: 317-346.
  • 5Pankrath R,Langer K. Molecular Water in Beryl, ^ⅥAl2[Be3Si6O18]·nH2O,as a Function of Pressure and Temperature: An Experimental Study [J]. American Mineralogist, 2002,87 : 238-244.
  • 6Artioli G, Rinaldi R, Stahl K, et al. Structure Refinements of Beryl by Single-Crystal Neutron and X-Ray Diffraction [J]. American Mineralogist, 1993,78: 762-76.
  • 7Artioli G,Rinaldi R,Wilsion C C,et al. Single-Crystal Pulsed Neutron Diffraction of a Highly Hydrous Beryl [J]. Acta Crystallographica, 1995, B51 : 733-737.
  • 8Charoy B,Donato P,Barres O,et al. Channel Occupancy in an Alkali-Poor Beryl from Serra Branca(Goias,Brazil): Spectroscopic Characterization [J]. American Mineralogist, 1996,81 : 395-403.
  • 9Moroson B. Structure and Thermal Expansion of Beryl [J]. Acta Crystallographica, 1972,B28:1899-1903.
  • 10Hazen R M, Au A Y,Finger L W. High-Pressure Crystal Chemistry of Beryl(Be3Al2Si6O18) and Euelase (BeA1 · SiO4 OH) [J]. American Mineralogist, 1986,71 : 977-984.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部