摘要
设H是一个超图,用H 和L(H)分别表示H的对偶超图和线图.定义H的邻接图是由L(H )和H的所有环组成的图,记作GH.若GH 是本原的,则称H是本原的,并称γ(GH)为H的指数.该文得到了所有n阶本原简单超图以及所有秩不小于 3的n阶本原简单超图的指数集。
Let H be a hypergraph. The author uses the notations H+* and L(H) to mean the dual hypergraph and line graph of H respectively. The adjacent graph of H, denoted by G-H, is defined to be the graph which consist of L(H+*) and the loops of H. If G-H is primitive, then H is called primitive, and γ(G-H) is called the exponent of H. In this paper, the author obtains that the exponent set of primitive simple hypergraphs of order n and the exponent set of primitive simple hypergraphs of order n with rank at least 3. Further, the extremal hypergraphs are described.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2004年第3期381-384,共4页
Acta Mathematica Scientia
基金
国家自然科学基金(19871040)
江苏省教育厅自然科学基金(02KJB52005)资助
关键词
超图
超图的邻接图
本原超图
Hypergraph
Adjacent graph of hypergraph
Primitive hypergraph