期刊文献+

官能团对自组装分子膜摩擦特性的影响 被引量:5

Effects of functional groups on the friction properties of self-assembled monolayers
下载PDF
导出
摘要 在原子力显微镜上,对分子链长相同、官能团不同的两种自组装分子膜的摩擦特性进行了研究,分析了载荷和滑动速度对自组装分子膜摩擦特性的影响.结果表明:自组装分子末端官能团的化学活性越强,形成的自组装分子膜的团簇特征越显著;对于两种短链自组装分子,摩擦力随着载荷的增大而增大,而滑动速度的影响在自组装分子末端官能团化学活性较大时才表现出来.形成结构稳定的自组装分子膜后,摩擦力比成膜初期的自组装分子膜显著降低,具有减摩效应.具有较强化学活性官能团的自组装分子膜,当载荷增加到一定值以后,会失去减摩效应,其化学活性越强,摩擦力越大. The friction properties of two kinds of self-assembled monolayers (SAMs) with the same length of molecule chain and different functional groups were investigated. The effects of load and sliding velocity on the friction characteristics of SAMs were analyzed. The results indicate that the stronger the chemical activity of functional group in self-assembled molecules is, the more remarkable the SAMs cluster topography characteristics are. The friction forces increase with increasing the loads for these two self-assembled molecules with short chain. However, the effects of sliding velocity on the friction force appear when the chemical reactivity of functional group in self-assembled molecules is strong enough. The friction forces decrease markedly after the formation of SAMs with stable structure, which exhibits anti-friction effect. The anti-friction effect disappears if the load rises to a threshold for SAMs with stronger active functional group. The stronger the chemical activity of functional group in self-assembled molecule is, the larger the friction forces are.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2004年第3期301-307,共7页 Chinese Journal of Materials Research
基金 国家自然科学基金50275015资助项目
关键词 有机高分子材料 材料表面与界面 原子力显微镜 摩擦 自组装单分子膜 官能团 Atomic force microscopy Friction Loads (forces) Organic polymers Self assembly
  • 相关文献

参考文献21

  • 1M.H.Stephen, in New Tribological Frontier and Future Trends Conference Proceedings, Nano-lubrication:Concept and Design (Beijing, Society of Tribologists and Lubrication Engineers and Chinese Tribology Institutes, 2002) p.5
  • 2H.C.Zhang, K.Ono, Tribology International, 36(4-6), 361(2003)
  • 3B.Bhushan, Tribology Issues and Opportunities in MEMS (Dordrecht, Netherlands, Kluwer Academic Publishers, 1998) p.639
  • 4W.R.Ashurst, C.Yau, C.Carraro, R.Maboudian, M.T.Duqqer, Journal of Microelectromechanical Systems,10(1), 41(2001)
  • 5R.Maboudian, W.R.Ashurst, C.Carraro, Sensors and Actuators A: Physical, 82(1), 219(2000)
  • 6A.Ulman, An Introduction to Ultrathin Organic Films, from Langmuir-Blodgett to Self-Assembly, (Boston,Academic Press, 1991) p.238
  • 7L.Y.Li, S.F.Chen, S.Y.Jiang, Langmuir, 19(3), 666(2003)
  • 8X.Y.Yang, S.S.Perry, Langmuir, 19(15), 6135(2003)
  • 9C.C.Susannah, P.F.Nealey, Langmuir, 17(3), 720(2001)
  • 10H.Brunner, T.Vallant, U.Mayer, H.Hoffmann, B.Basnar, M.Vallant, G.Friedbacher, Langmuir, 15(6), 1899(1999)

二级参考文献5

共引文献58

同被引文献67

  • 1李争显,杜继红,周慧,徐重,周廉.钛表面辉光等离子无氢渗碳的研究[J].稀有金属材料与工程,2004,33(11):1174-1177. 被引量:10
  • 2孙荣禄,牛伟,王成扬.钛合金表面激光熔覆TiN-Ni基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007,36(1):7-10. 被引量:24
  • 3VINARCIK E J. Light metal advances in the automotive industry part II: aluminum[ J]. Light Metal Age, 2001,59(5 - 6) : 22 - 27.
  • 4MILLER W S, ZHUANG L, BOTIERM J, et al. Recent development in aluminium alloy for the automotive industry [ J ]. Materials Science and Engineering A, 2000,280(9) : 34 - 38.
  • 5CIMPOIASU E, TOLPYGO S K, LIU X, et al. Aluminum oxide layers as possible components for layered tunnel barriers[ J]. Applied Physics, 2004,96(25 ) : 1088 - 1093.
  • 6TAMBE N S, BHUSHAN B. Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates[ J]. Nanotechnology, 2005, (16) : 1549 - 1558.
  • 7KIYOSHI FUNATANI. Emerging technology in surface modification of light metals[ J]. Surface and Coating Technology,2000, (133 - 134) :264 - 272.
  • 8WILDE ANNE. Ceramic-base surface treatment technology for light-metal alloys [ J]. Industrial Heating, 2005,72 (2) :61 - 65.
  • 9YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering [ J ]. Surface and Coatings Technology, 1999,122( 1 ) :73 - 93.
  • 10JANSEN R, DAVIS B, TANAKA C T, et al. Formation of doped Al2O3 tunnel barriers by plasma oxidation of δ-doped AI[J]. Surface Science, 2000,463(2) : 109 - 114.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部