期刊文献+

基于神经网络的机械磨损故障光谱定位诊断法 被引量:2

Diagnosis of Wear-Induced Breakdown of Machine by Spectrometric Analysis Based on Artificial Neural Network
下载PDF
导出
摘要 在分析常用光谱定位诊断方法的基础上提出了基于神经网络的光谱定位诊断法;将机械摩擦副材质的元素含量作为神经网络输入,将材质所对应的部件作为神经网络输出,建立了相应的神经网络训练样本;通过整理训练样本和训练神经网络,利用神经网络超强的非线性映射能力和容错性实现了磨损故障部位诊断;通过算例分析验证了所提出的诊断方法的可行性和准确性.结果表明,所建立的方法简洁有效,并具有很高的诊断精度. The spectrometric method to diagnose the wear of frictional parts based on artificial neural network (ANN) was established on the basis of analyzing commonly used spectrometric localization diagnosis methods. Thus the training samples were established using the elemental compositions of the frictional pair materials as the inputs of ANN and the corresponding frictional parts as the outputs of ANN. The diagnosis of the wear failure locations was realized by coordinating the training samples, training the ANN and making use of the powerful non-linear mapping ability and the error-tolerating ability of the ANN. The precision and the feasibility of the established diagnosis method were validated by the analysis of some examples. It was found that the established diagnosis method was applicable to diagnose the wear status of frictional parts with convenience and good precision. Cr4Mo4V, 2Cr3WMoV-1, 1Cr18Ni9Ti, H62 and QA10 are taken for example in the research and analysis.
作者 陈果 左洪福
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2004年第3期263-267,共5页 Tribology
基金 南京航空航天大学人才基金资助项目(S0293-071) 民航科研基金资助项目(Y0202-MH).
关键词 光谱分析 神经网络 磨损 定位诊断 Artificial intelligence Diagnosis Machinery Neural networks Spectrometry Wear of materials
  • 相关文献

参考文献4

二级参考文献7

  • 1安德森 D P 金元生 杨其明 译.Wear Atlas(磨粒图谱)[M].Beijing(北京):MachineryIndustry Press(机械工业出版社),1987.1-14.
  • 2安德森 D P 金元生 杨其明 译.磨粒图谱[M].北京:机械工业出版社,1987.1-14.
  • 3Kai G. Architecture and design of a diagnostic information fusion system. Artificial Intelligence for Engineering Design,Analysis and Manufacturing[J], 2001, 15: 335-338.
  • 4罗发龙,神经网络信号处理,1993年
  • 5蔡正国,1993年
  • 6赵方,谢友柏,柏子游.油液分析多技术集成的特征与信息融合[J].摩擦学学报,1998,18(1):45-52. 被引量:17
  • 7严新平,谢友柏,萧汉梁.摩擦学故障种类诊断的D-S信息融合研究[J].摩擦学学报,1999,19(2):145-150. 被引量:34

共引文献18

同被引文献18

  • 1黄碧华,裘崇伟,谢友柏.柴油机磨损状态监测及故障诊断专家系统知识库建立的研究[J].摩擦学学报,1994,14(4):352-359. 被引量:18
  • 2杨虞微,陈果.光谱油样分析监测技术中的神经网络预测方法[J].光谱学与光谱分析,2005,25(8):1339-1343. 被引量:14
  • 3Jayachandran T.Statistical Methods for the Joint Oil Analysis Program[R].ADA111736,1982
  • 4IFSI Ltd.Extended Diagnostic & Maintenance System[Z].IFSI Ltd,Canada,1992
  • 5Bird Ltd.Predict Maintenance Program:ManualⅠ& Ⅱ[Z].Bird Ltd,1992
  • 6Kincaid R L.Advanced maintenance management:an expert system of applied tribology[A].International Sodety of Tribology[C],1993
  • 7Pawlak Z.Rough set[J].International Journal of Information and Computer Science,1982,11(5):341-356
  • 8Nguyen H S,Skowron A.Quantization of real values attributes,rough set and Boolean reasoning approaches[A].Proceeding of the 2nd Joint Annual Conference On Information Science[C].Wrightsville Beach,Nc,1995:34-37
  • 9Nguyen S H,Ngoyen H S.Some efficient algorithms for rough set methods[A].In:Proe.of the Confereace of Information Processing and Management of Uncertanty in Knowledge-Based Systems[C].Granada,Spain,1996:1451-1456
  • 10侯志强,薛立彤,柳文林.基于润滑油光谱数据的发动机磨损部位识别[J].润滑与密封,2010,35(1):89-92. 被引量:9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部