期刊文献+

一种基于SPRINT的判定树分类算法

A classification algorithm of decision tree based on SPRINT
下载PDF
导出
摘要 分类算法的研究一直是数据挖掘领域的一个热点。本文在介绍了目前判定树分类算法状况的基础上,着重分析了目前较为流行的SPRINT算法,并对该算法的数据结构进行了改进,提出一种新的算法NS,使得分类的速度及可扩充性得以提高。这一改进算法在一个银行决策支持系统(DSS)中得到实现,取得了很好的效果。 Classification is an important problem in the emerging field of data mining. Based on the introduction to some typical classification algorithms, this paper places emphasis on the algorithm of SPRINT which is popular classifier, and presents a new algorithm named NS which includes some improvements based on SPRINT's data structure. The NS makes classification more scalable.
出处 《信息技术》 2004年第5期13-16,共4页 Information Technology
关键词 数据挖掘 判定树 SPRINT算法 data mining decision tree SPRINT algorithm
  • 相关文献

参考文献6

  • 1[1]Frawley W, Piatetsky-Shapior G Matheusc. Knowledge Discovery in Databases: An Overview [M]. Knowledge Discovery in Databases. Cambridge, MA:MIT Press, 1991.1-27.
  • 2[3]Agrawal R, Imielinski T, Swami A. Database Mining: A Performance Perspective[J]. IEEE Trans. on Knowledge and Data Engineering, 1993,5(6).
  • 3[4]Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining[M]. In Proc. EDBT, 1996,(4).
  • 4[5]Shafer J. Agrawal R. Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining[M]. In Proc. Of VLDB,1996.
  • 5[6]Agrawal R, et al. An Interval Classifier for Database Mining Applications[M]. In Proc. of the VLDB Conf., 1992.
  • 6[7]Chan P K, Stolfo S J. Meta-learning for Multistrategy and Parallel Learning[M]. In Proc. Second Intl. Workshop on Multistrategy Learning, 1993.150-165.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部