期刊文献+

基于支持向量机的异常值检测的两种方法 被引量:1

Two methods of novelty detection based on SVM
下载PDF
导出
摘要 支持向量机逐渐成为机器学习的一种方法。异常值检测是支持向量机中一种特殊的分类问题,被称为一类分类。一类分类通过核映射确定一个包含正类样本的紧致区域,以便使异常值更容易暴露出来。介绍了一些一类分类算法的基本思想。 Support Vector Machine(SVMs) have become an popular tool for machine learning task.Novelty detection is a special classification of SVM, called as one-class classification. For uncover novelty easily, one-class classification confirm a tighten region include positive kind through kernel mapping. The purpose of this article is introduction to basic idea of some one-class algorithm.
出处 《信息技术》 2004年第5期3-4,共2页 Information Technology
关键词 支持向量机 一类分类 决策函数 SVM one-class decision-making function
  • 相关文献

参考文献5

  • 1[1]D M J Tax, P W Robert. Duin. Outliers and data descriptions. http://citeseer.nj.nec.com/522199.html.
  • 2[2]D M J Tax, A Ypma, P W Robert. Duin. Support vector data description applied to machine vibration analysis. http://citeseer.nj.nec.com/tax99support.html.
  • 3[3]B scholkopf,Platt,J hawe-Taylor,etc. Estimating the support of a high-dimensional distribution. Neural Computation.2001,7(13):1443-1471.
  • 4[4]G Ratsch, S Mika, B Scholkopf,etc. Constructing Boosting Algorithms from SVMs: An application to One-class Classification. IEEE transactions on pattern analysis and machine intelligence, 2002,9(24):1184-1199.
  • 5[5]O L Mangasarian. Arbitrary-norm separating plane. Operation Research letters. 1999,1(24):15-23.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部