摘要
本文应用解析方法讨论Boussinesq方程在微小干扰下的浑沌性态,具体做法是首先利用动坐标变换ζ=x-ct将带干扰项的Boussinesq方程化为二阶非线性常微分方程,然后借助Melnikov方法找出系统呈现浑沌性态的条件。
In this paper the chaotic behavior of Boussinesq equation under a small perturbation is discussed by applying analytical method. Using coordinate transformation, we transform Boussinesq equation with perturbation terms into the second order ordinary differential equation. Then the conditions for systems exhibiting chaotic behavior are found by means of the Melnikov method.
基金
国家教委博士点基金