摘要
设A、B是二阶非负定阵,Γ_(s,t)={t_r(multiply from i=1 to (?)Gi)|G_i=A或B·s、t分别是乘积中A、B出现的次数}。对某些s和t,讨论了Γ_(s,t)上的偏序关系,得到了一些迹不等式。
Let A and B be 2×2 non-negative definite matrices, Γ_(s(?))={tr(multiply from i=1 to(s+(?))Gi): Gi=A or B; s, t are the numbers of times that A and B appear in the product respectively}. In this paper, we study the partial ordering on Γ_(s(?)). Some inequalities on traces are obtained.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
1992年第1期8-11,共4页
Journal of Jinan University(Natural Science & Medicine Edition)
关键词
非负定阵
迹
不等式
non-negative definite matrix
trace
inequality