摘要
在方程[x(t)+p(t)x(t-r)]′+sum from i=1 to n qi(t)x(t-ri)=0中,p(t)、qi(t)(i=1,2,…,n)是t的连续函数对0≤p(t)≤A<+∞,-1≤p(t)≤A<0,-∞<B≤p(t)≤A<-1的3种情形,给出此方程一切解振动的判别准则。
In this paper, we consider the behavior of the solutions of nonlinear differential equation y^((n))=f(t, y). (1) We give some conditions wich guarentee that the solution y(t) of (1) satisfies lira [y(t)-p(t)]=0, where p(t) is a polynomial t→+∞ of degree≤(n-1), and under the same conditions, for each polynomial p(t) of degree≤(n-1), there exists a solution y(t) of (1) such that lim [y(t)-p(t)]=0. Our results in this paper t→+∞ eontain the related theorems in [1]、[2]、[3] as special cases.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
1992年第1期1-7,共7页
Journal of Jinan University(Natural Science & Medicine Edition)
关键词
中立型方程
振动
判别准则
first order
linear
neutral differential equation
oscillation