期刊文献+

方程[x(t)+p(t)x(t-r)]′+(sum from i=1 to n)q_i(t)×x(t-r_i)=0的振动性

OSCILLATIONS OF THE NEUTRAL DIFFERENTIAL EQUATION [x(t)+p(t)x(t-r)]'+sum from i=1 to nqi(t)x(t-ri)=0
下载PDF
导出
摘要 在方程[x(t)+p(t)x(t-r)]′+sum from i=1 to n qi(t)x(t-ri)=0中,p(t)、qi(t)(i=1,2,…,n)是t的连续函数对0≤p(t)≤A<+∞,-1≤p(t)≤A<0,-∞<B≤p(t)≤A<-1的3种情形,给出此方程一切解振动的判别准则。 In this paper, we consider the behavior of the solutions of nonlinear differential equation y^((n))=f(t, y). (1) We give some conditions wich guarentee that the solution y(t) of (1) satisfies lira [y(t)-p(t)]=0, where p(t) is a polynomial t→+∞ of degree≤(n-1), and under the same conditions, for each polynomial p(t) of degree≤(n-1), there exists a solution y(t) of (1) such that lim [y(t)-p(t)]=0. Our results in this paper t→+∞ eontain the related theorems in [1]、[2]、[3] as special cases.
作者 冯志刚
机构地区 暨南大学数学系
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 1992年第1期1-7,共7页 Journal of Jinan University(Natural Science & Medicine Edition)
关键词 中立型方程 振动 判别准则 first order linear neutral differential equation oscillation

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部