期刊文献+

旋转磁场中的自旋演化及几何位相 被引量:6

EVOLUTION AND GEOMETIC PHASE OF SPIN IN A ROTATING MAGNETIC F
下载PDF
导出
摘要 讨论了自旋为1/2的粒子在旋转磁场中的演化.利用旋转坐标系方法精确求出了其演化波函数,并用这个精确解计算了共振和非共振情形下的自旋翻转率、自旋极化矢量以及非绝热几何位相. The evolution of spin 1/2 particles in a rotating magnetic field is discussed. Then the wavefunction of the spin 1/2 particles by using the method of rotating frame is also obtained. At last, the spin reversal ratio, spin polarization vector and non-adiabatic geometric phase in case of resonance and non-resonance are calculated.
作者 颜玉珍 胡连
出处 《华南师范大学学报(自然科学版)》 CAS 2004年第2期82-85,89,共5页 Journal of South China Normal University(Natural Science Edition)
基金 广东省自然科学基金资助项目(320352)
关键词 旋转磁场 自旋 非绝热几何位相 旋转坐标系 量子理论 rotating magnetic field rotating frame non-adiabatic geometric phase
  • 相关文献

参考文献7

  • 1AHARONOV Y, BOHM D. Significance of electromagnetic potentials in the quantum theory [J]. Phys Rev, 1959,155(3) :485.
  • 2BERRY M V. Quantal phase factor accompanying adiabatic changes [J]. Proc Roy Soc London, 1984,A392:45.
  • 3AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum [J]. Phys Rev Lett, 1987,58:1593.
  • 4BULGACA. On the effective action for a nonadiabatic quantum process [J]. Phys Rev, 1988,A37:4084.
  • 5RABI I I, MILLMAN S, KUSCH P, et al. The molecular beam resonance method for measuring nuclear magnetic moments [J]. Phys Rev, 1939, 55:526.
  • 6NIELSIN M A, CHUANG L. Quantum Computation and Quantum Information [ M]. London:Cambridge University Press, 2000.
  • 7JONES J A, VEDRL V, EKERT A, et al. Geometric quantum computation using nuclear magnetic resonance [ J].Nature, 2000,403:869.

同被引文献38

  • 1高玉梅,胡连,张晓燕.旋转中子及螺旋光纤的几何相[J].华南师范大学学报(自然科学版),2005,37(1):60-65. 被引量:2
  • 2BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Roy Soc A, 1984, 392:45 -47.
  • 3SHAPERE A, WILCZEK F. Geometric phase in physics [ M]. Singapore: World Scientific, 1989.
  • 4KWIAT P G, CHIAO R. Observation of a nonclassical Berry's phase for the photon[J]. Phys Rev Lett,1991,66 (5) : 588 -591.
  • 5WEBB C L, GODUN R M, SUMMY G S, et al. Measurement of Berry's phase using an atom interferometer [ J ]. Phys Rev A, 1999,60(3) :R1783 - R1786.
  • 6PANCHARATNAM S. Generalized theory of interferencia and its applications[J]. Proc Indian Acad Sci A, 1956, 44 : 247 - 262.
  • 7WANG Z S, WU C F, FENG X L, et al. Nonadiabatic geometric quantum computation [ J ]. Phys Rev A,2007, 76 : 044303.1 - 044303.4.
  • 8MARRUCCI L, MANZO C, PAPARO D. Paneharamam -Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation [J]. Appl Phys Lett, 2006,88 (22): 221102. 1 - 221102.3.
  • 9BONATSOS D, DASKALOYANNIS C, LALAZISSIS G A. Unification of Jaynes - Cummings model [ J ]. Phys Rev A, 1993,47(4) :3448 - 3451.
  • 10CRNUGELJ J, MARTINIS M, MIKUTA - MARTINIS V. Properties of a deformed Jaynes -Cummings model[ J]. Phys Rev A, 1994,50(2) : 1785 - 1791.

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部