期刊文献+

关于无6-,8-和9-圈平面图的3-选色 被引量:3

On 3-Choosability of Plane Graphs without 6-, 8-and 9-Cycles
下载PDF
导出
摘要 图G的选色数 ,记为ch(G) ,定义为最小的自然数k ,使得满足 :对任一顶点给定k种颜色的列表 ,且染色时每个顶点的颜色只能从自身的颜色列表中选择时 ,总存在图G顶点的一个正常着色 .文章证明了每个围长至少为 4且不含 6 圈 ,8 圈和 9 圈的平面图是 3 The choice number of a graph G, denoted by ch(G) is the minimum number k such that if we give lists of k colors to each vertex of G, there is a vertex coloring of G where each vertex receives a color from its own list no matter what the lists are. In this paper, it is shown that ch(G)≤3 for each plane graph of girth not less than 4 which contains no 6-, 8-and 9-cycles.
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第2期39-42,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目 ( 10 0 0 10 3 5 ) .
关键词 平面图 选色 着色 围长 cycle, girth, choosable, plane graph
  • 相关文献

参考文献8

  • 1Erdos P, Rubin A L, Taylor H. Choosability in graphs[J]. Congr Numer, 1979, 26: 125-157.
  • 2Thomassen C. Every planar graph is 5-choosable[J]. Journal of Combinatorial Theory Ser (B), 1994, 62(1): 180-181.
  • 3Thomassen C. 3-list-coloring planar graphs of girth 5[J]. Journal of Combinatorial Theory Ser (B), 1995, 64(1): 101-107.
  • 4Peter C B Lam, Xu B, Liu J. The 4-choosability of plane graphs without 4-cycles[ J]. Journal of Combinatorial Theory Ser (B),1999, 76(2): 117-126.
  • 5Peter C B Lam, Shiu W C, Xu B. On structure of some plane graphs with application to choosability[J]. Journal of Combinatorial Theory Ser (B), 2001, 82(2): 285-297.
  • 6XU Baogang (Institute of Systems Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China).(4m, m)-CHOOSABILITY OF PLANE GRAPHS[J].Journal of Systems Science & Complexity,2001,14(2):174-178. 被引量:5
  • 7Xu B. On structure of graphs embedded on surfaces of nonnegative characteristic with application to choosability[J]. Discrete Math,2002, 248(1-3): 283-291.
  • 8N Alon, M Tarsi. Colorings and orientations ofgraphs[J]. Combinatorica, 1992, 12(2): 125-134.

共引文献6

同被引文献19

  • 1ERDOS, P, RUBIN A L, TAYIDR H. Choosability in graphs[J]. Congr N umer, 1979, 26:125-157.
  • 2THOMASSEN C. Every planar graph is 5-choosable[J]. Journal of Combinatorial Theory: Ser B, 1994, 62(1):180-181.
  • 3VOIGT M. List eolouring of planar graphs[J]. Discrete Math, 1993,120:215-219.
  • 4THOMASSEN C. 3-list-coloring planar graphs of girth 5[J]. Journal of Combinatorial Theory: Ser B, 1995, 64(1):101-107.
  • 5PKTER C B Lam. The 3-choosability of plane graphs of girth 4[J]. Discrete Math, 2005, 294:297-301.
  • 6P, Rubin A L, Taylor H. Chossability in graphs [ A ]. Proceedings of the West Coast Conference Combinatorics, Graph Theory and Computing [ C]. Arcata: Congres Numeratium, 1979 : 125 - 157.
  • 7N Alon, M Tarsi. Colorings and orientations of graphs[J]. Combinatorica, 1992, 12(2) : 125 -134.
  • 8Zhang Hai - hui . On 3 - Choosability of plane graphs without 5 - , 8 - and 9 - cycles [ J ]. Journal of Lanzhou University , 2005,41 (3) :93 -97.
  • 9邦迪JA,默蒂USR图论及其应用[M].北京:科学出版社,1984.
  • 10ZHANG Haihui. On 3-choosability of plane graphs without 5-, 8- and 9- cycles [J]. Journal of Lanzhou University Natural Scienees, 2005 (41) : 93-97.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部