摘要
图G的选色数 ,记为ch(G) ,定义为最小的自然数k ,使得满足 :对任一顶点给定k种颜色的列表 ,且染色时每个顶点的颜色只能从自身的颜色列表中选择时 ,总存在图G顶点的一个正常着色 .文章证明了每个围长至少为 4且不含 6 圈 ,8 圈和 9 圈的平面图是 3
The choice number of a graph G, denoted by ch(G) is the minimum number k such that if we give lists of k colors to each vertex of G, there is a vertex coloring of G where each vertex receives a color from its own list no matter what the lists are. In this paper, it is shown that ch(G)≤3 for each plane graph of girth not less than 4 which contains no 6-, 8-and 9-cycles.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
2004年第2期39-42,共4页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目 ( 10 0 0 10 3 5 ) .
关键词
圈
平面图
选色
着色
围长
cycle, girth, choosable, plane graph