期刊文献+

准周期量子伊辛模型的居里温度和磁化强度(英文)

Curie Temperature and Magnetization Profiles of Quasiperiodic Layer Quantum Ising Model
下载PDF
导出
摘要 利用平均场理论研究了一维横场中准周期层状量子伊辛模型性质 ,得到系统的居里温度方程 ,发现在自旋链足够长的情况下其居里温度回归到周期系统 .并计算了系统的平均磁化强度随长度的变化 . Under the approximation of the mean field, Curie temperature and magnetization profiles of layer quantum Ising model with a transverse field were studied. The Curie temperature equation of the model was derived. The dependence of Curie temperature on the Fibonacci number n and the external field is given. It is found that the Curie temperature of quasiperiodic models is like to that of periodic models if the chain is long enough. With the same framework, the magnetization profiles of the system was also calculated. The method proposed here can be applied to other quasiperiodic model.
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第2期46-50,共5页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 准周期 量子伊辛模型 居里温度 磁化强度 自旋链 Curie temperature, quasiperiodic, quantum Ising model, magnetization
  • 相关文献

参考文献9

  • 1Callaway J. Quantun Theory of the Solid State[M]. New York: Academic Press, 1976.
  • 2Saber M, Ainane A, Dujardin F, etal. Magnetic properties of a transverse spin-(1/2) Isingfilm[J]. PhysRev B, 1999,59(10):6908.
  • 3Wang Xiaoguang, Pan Shaohua, Yang Guozhen. Effects of multi-surface modification on Curie temperature of ferroelectric films[J].J Phys Condens Matter, 1999,11(34) :6581-6588.
  • 4Shechtman D, Blech I, Gratias D, et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry[J].Phys Rev Lett, 1984,53(20): 1951-1953.
  • 5Merlin R, Bajema K, Royclarke, et al. Quasiperiodic GaAs-AlAs Heterostructures[J]. Phys Rev Lett,1985,55(17):1768-1770.
  • 6Benza V G. Phase transition in the generalized Fibonacci quantum Ising models[J]. Phys Rev B, 1990,41(13):9578.
  • 7Kohmoto M, Kadanoff L P, Tang C. Localization Problem in One Dimension: Mapping and Escape [ J]. Phys Rev Lett, 1983,50(23): 1870-1872.
  • 8Niu Q, Nori F. Renormalization-Group Study of One-Dimensional Quasiperiodic Systems[J]. Phys Rev Lett, 1986,57(16) :2057-2060.
  • 9Niu Q, Nori F. Theory of superconducting wire networks and Josephson-junction arrays in magnetic fields[J]. Phys Rev B, 1989,39(4) :2134-2150.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部