期刊文献+

带有边界条件的曲面插值蝴蝶细分算法

Interpolatory Convexity Preserving Subdivition Schemes for Curves and Surfaces
下载PDF
导出
摘要 给出一种带有边界条件的曲面插值蝴蝶细分算法;边界条件可以是曲面的边界参数曲线或者曲面的边界参数曲线以及曲面在该边界曲线的法向量 进而分析了极限曲面的收敛性和光滑性 This paper is concerned with constructing butterfly subdivision scheme for surface satisfying boundary conditions.The interpolated boundary curves are arbitrary parametric curves or not only the boundary curves, but also the normal vector.The convergence and smooth analysis are presented.Numerical examples give evidence that these methods are effective.
作者 李爱荻
出处 《大连铁道学院学报》 2004年第1期1-3,共3页 Journal of Dalian Railway Institute
关键词 边界条件 曲面插值蝴蝶细分算法 边界参数曲 收敛性 光滑性 interpolation convexity preserving subdivision surve surface
  • 相关文献

参考文献7

  • 1NIRA HYN, DAVID LEVIN, JOHN A.Gregory, A Buttefry Subdivision Scheme for Surface Interpolati on with Tencontrol[J].ACM Transactions on Graphics,1990, 9(2): 270-276.
  • 2CHARLES T. Loop, Smooth spline surfaces based on triangles[D].University of Utah, 1987.
  • 3NIRA DYN, DAVID LEVIN, JOHN A. Gregory, a 4-point interpolatory subdivision scheme for curve design[J].Computer Aided Geometrical design,1987, (4): 257-268.
  • 4ADI LEVIN. Combined subdivision schemes for the design of surfaces satisfying boundary conditions[J].Computer Aided Geometrical design, 1999, (4): 345-354.
  • 5JOS STAM. On subdivision schemes generalizing uniform B-spline surfaces of arbitraly degree[J].Computer Aided Geometrical design, 2001, (4): 383-396.
  • 6LUIZ VELHO, DENIS ZORIN.4-8 Subdivision J[J].Computer Aided Geometrical design, 2001, 18: 397-427.
  • 7Gèraldine Morin, Joe Warren, Henrik Weimer.A subdivision scheme for surface of revolutio[J].Computer Aided Geometrical design, 2001, 18: 483-502.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部