期刊文献+

分数微积分在系统建模中的应用 被引量:4

Application of Fractional Calculus in System Modeling
下载PDF
导出
摘要 介绍了分数微积分定义,并运用拉普拉斯变换法证明了分数阶线性常微分方程解的存在性和唯一性,并给出了其传递函数描述和状态方程描述.提出了分数阶线性常微分方程的两种求解方法:直接拉普拉斯变换法和状态空间法,并利用一个粘弹性系统的仿真实例证明了其有效性. An introduction of the definitions of fractional calculus was given. Laplace transform method was used to verify the existence and uniqueness of the solutions of fractional-order linear differential equations with constant coefficients. And their transfer function representation and state-space representation were also given. The solutions of fractional-order linear differential equations with constant coefficients were given in two ways: the direct Laplace transform method and the state-space method. Finally, an example of a viscoelasticity system was given to show the effectiveness of the methods aforementioned.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第5期802-805,共4页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2003AA517020) 上海市科技发展基金资助项目(011607033)
关键词 分数微积分 系统建模 分数阶微分方程 分数阶线性系统 Differential equations Laplace transforms Linear equations Linear systems State space methods Transfer functions Viscoelasticity
  • 相关文献

参考文献8

  • 1Miller K S,Ross B.An introduction to the fractional calculus and fractional differential equations [M ].New York:John Wiley & Sons,1993.
  • 2Oldham K B,Spanier J.The fractional calculus [M ].New York:Academic Press,1974.
  • 3Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.
  • 4Carpinteri A,Mainardi F.Fractals and fractional calculus in continuum mechanics [M].Wien:Springer,1997.
  • 5Podlubny I.Fractional-order systems and -controllers [J].IEEE Trans on Automatic Control,1999,44(1):208-214.
  • 6Ikeda F,Kawata S.An optimal design of fractional differential active mass dampers for structures equipped with viscoelastic dampers[A].5th International Conference on Motion and Vibration Control [C].Australia:MOVIC,2000.223-228.
  • 7王振滨,曹广益,曾庆山,朱新坚.分数阶PID控制器及其数字实现[J].上海交通大学学报,2004,38(4):517-520. 被引量:25
  • 8池田富士雄 川田诚一 小口俊树.分数階微分アクティブススダンパにょる柔软再造物の振動制御[J].日本机械学会论文集(C编),2001,67(661):2798-2805.

二级参考文献6

  • 1Oldham K B, Spanier J. The fractional calculus[M].New York : Academic. 1974.
  • 2Podlubny I. Fractional differential equations [M].San Diego :Academic Press, 1999.
  • 3Miller K S, Ross B. A introduction to the fractional calculus and fractional differential equations [M].New York: John Wiley & Sons, 1993.
  • 4Carpinteri A, Mainardi F. Fractals and fractional calculus in continuum mechanics [M]. Wien:Springer, 1997.
  • 5Lubich Ch. Discretized fractional calculus[J]. SIAM J Math Anal, 1986, 17(3):704-719.
  • 6Podlubny I. Fractional-order systems and PIλDβ-controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1):208-214.

共引文献24

同被引文献100

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部