期刊文献+

一般化凸空间上择一不等式 被引量:1

Alternative inequalities on generalized convex spaces
下载PDF
导出
摘要 首先改进文献[1]中给出的KKM型定理,然后根据该定理推出一般化凸空间上的择一不等式,最后构造一个G 凸空间并在该空间上讨论择一不等式. In this paper, we first improved the KKM type theorem in paper [1], and then used the improved KKM type theorem on generalized convex spaces to obtain alternative inequalities, finally constructed a generalized convex space and discussed alternative inequality problems on this space.
作者 朴勇杰
出处 《延边大学学报(自然科学版)》 CAS 2004年第2期79-82,共4页 Journal of Yanbian University(Natural Science Edition)
关键词 一般化凸空间 Г-凸的 KKM映射 转移闭(开)值的 Generalized convex spaces Γ-convex KKM map Transfer closed(open) valued
  • 相关文献

参考文献6

  • 1[1]Sehie Park. Elements of the KKM theory for generalized convex spaces[J]. Korean J Comp Appl Math, 2000, (7): 1 - 28.
  • 2[2]Sehie Park. New subclasses of generalized convex spaces[J ]. Fixed point theory and Applications(Y. J.Cho, ed), Nova Sci Publ, New-York, 2000,91-99.
  • 3[3]Lassonde M. On the use of KKM multimaps in fixed point theory and related topics[J]. J Math Anal Appl, 1983,97:151 - 201.
  • 4[4]Horvath C D. Contractibility and generalized convexity[J]. J Math Anal Appl, 1991,156:341-357.
  • 5[5]Tian G Q. Generalization of KKM theorem and the Ky Fan minimax inequality with applications to maximal elements, price equilibrium and complementarity[J]. J Math Anal Appl, 1992, 170:457-471.
  • 6[6]Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J]. Math Student, 1994,63:123 - 145.

同被引文献7

  • 1朴勇杰.一般化凸空间上的变分不等式解的存在性问题[J].系统科学与数学,2004,24(4):463-468. 被引量:6
  • 2朴勇杰.Section theorems and variational inequality theorems on generalized convex spaces[J].J Math,2005,25(5):507-512.
  • 3Ding X P,K.K.Tan.Matching theorems,fixed point theorems and minimax inequlities without convexity[J].J Austral Math Soc(Ser.A),1990,49:111-128.
  • 4Park S H.On the KKM type theorems on spaces having certain contractible subsects[J].Kyungpook Math,1992,32:607-628.
  • 5Park S H.New subclasses of generalized convex spaces[J].Fixed Point Theory and Application.(J.J.Cho,ed),Nova Sci.Publ.,New York,2000,91-99.
  • 6Lassonde M.One the use of KKM multimaps in fixed Point theory and related topics[J].J Math Anal Appl,1982,97:151-201.
  • 7Horvath C D.Contractibility and generalized convexity[J].J Math Analy Appl,1991,156:341-347.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部