期刊文献+

分片常系数电导率问题的边界元配点法

Collocation boundary element method for the conductivity equation with piecewise constant coefficient
下载PDF
导出
摘要 用边界元方法讨论了具有分片常系数电导率方程Δ(γΔu)=0的Dirichlet边值问题.由于方程的基本解无法显式写出,在应用通常边界元时存在很大的困难.基于这个电导率方程的解的积分表达式,导出一个在边界和交界面上的积分方程组,并讨论了这个方程组的性质,对于这个积分方程组,用配点法进行求解,且给出其误差分析.相应的数值例子证实了算法的有效性.应该指出的是本文所用的方法也适用于具有分片常系数椭圆方程的不同边界问题. The paper proposes a collocation BEM method for the Dirichlet problem of the conductivity equation Δ( γ Δ u )=0 which has the piecewise constant coefficient.Since the fundamental solution of this conductivity equation can not be expressed explicitly,it is difficult to apply the usual BEM method for this problem. Based on the integral representation formula for solutions of the conductivity equation, the integral equations on the boundary and interface curves are obtained and the properties of these integral equations are discussed. For the integral equations, a collocation method is proposed and the error analysis is given.The numerical simulation results show that this method is effective and accurate.It should be remarked that this method can be extended to treat other boundary value problems for elliptic equations with piecewise constant coefficient.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第2期154-164,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10271032)
关键词 电导率方程 配点法 分段常系数 边界积分方程组 conductivity equation piecewise constant coefficient boundary integral equations collocation method
  • 相关文献

参考文献10

  • 1Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M]. Berlin:Springer-Verlag, 1977.
  • 2Kang H, Seo J K. The Layer potentials technique for the inverse conductivity problem[J]. Inverse Problems,1996,12: 267-278.
  • 3Axelsson O, Barker V A. Finite Element Solution of Boundary Value Problems. Theory and Computation[M]. Orlando, FL: Academic Press, Inc.,1984.
  • 4Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam-New YorkOxford:North-Holland Publishing Co.,1978.
  • 5Hsiao G C, Wendland W L. A finite element method for some integral equations of the first kind [J]. J. Math. Anal. Appl.,1977,58:449-481.
  • 6陈传璋 侯宗义 李明忠.积分方程及其应用[M].上海:上海科技出版社,1987..
  • 7Verchota G. Layer potential and regularity for the Dirichlet problem for Laplace equation in Lipschitz domain[J]. J. Functional Analysis,1984,59:572-611.
  • 8Schumaker L L. Spline Functions. Basic Theory[M]. New York:Wiley,1981.
  • 9Elschner J, Graham I G. An optimal order collocation method for the first kind boundary integral equations on polygons[J]. Numer. Math.,1995,70:1-31.
  • 10Elschner J ,Jeon Y,Sloan I H,et al. The collocation method for the mixed boundary value problems on domains with curved polygonal boundaries[J]. Numer. Math. , 1997,76: 355-381.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部