期刊文献+

求解对流扩散方程的ENO-MMOCAA差分解法 被引量:1

The ENO-MMOCAA Finite Difference Method for Convection-diffusion Equation
下载PDF
导出
摘要 把ENO插值和MMOCAA“(The modified method of characteristics with adjusted advection,Jim Douglas,Jr.,Numer.Math.(1999),Vol.83:353-369)”差分方法相结合,提出了求解对流扩散方程的ENO-MMOCAA差分方法,避免了原来基于高阶Langrange插值的MMOCAA差分方法在解的陡峭前缘附近产生的震荡。本文给出了格式的误差估计及数值算例。 Combing the MMOCAA '(The modified method of characteristics with adjusted advection, Jim Douglas. Jr., Numer. Math. (1999), Vol. 83: 353-369)' difference method with ENO, the ENO-MMOCAA difference method is proposed for covection-diffusion equation in the paper. The new method is free from oscillation near the steep front, with which the problem is solved by the MMOCAA difference method based on high-order Lagrange interplation. The error estimates of the scheme and numerical example are given.
作者 由同顺
出处 《工程数学学报》 CSCD 北大核心 2004年第3期377-381,共5页 Chinese Journal of Engineering Mathematics
基金 南开大学 天津大学刘徽应用数学中心资助
关键词 对流扩散方程 ENO捅值 MMOCAA差分方法 convection-diffusion problem ENO interpolation MMOCAA difference method
  • 相关文献

参考文献3

二级参考文献2

共引文献19

同被引文献5

  • 1由同顺,孙澈.非线性对流-扩散方程初边值问题的特征-差分解法[J].计算数学,1993,15(2):143-155. 被引量:20
  • 2Ewing R E, Russell T F. Multistep Galerkin method along characteristics for cnvection-diffusion problems[A]. Vichnevetsky R,Stepleman R S. Advances in Computer Methods for Partial Differential Equations[C]. IMCS, 1981 : 28-36.
  • 3Douglas J Jr. , Huang C S,Pereira F. The modified method of characteristics with adjusted advection[J]. Numer. Math. , 1999,83 : 353-369.
  • 4Harten A,Euquist B, Osher S,Chakravarthy S. Uniformly hight order accurate essentially non-oscillatory scheme[J]. J. C. P. , 1987,71: 231-303.
  • 5Shu C W,Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J. C. P. ,1989,83:32-78.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部