期刊文献+

球面中常平均曲率超曲面的整体Pinching定理

Global Pinching Theorem for Hypersurfaces with Constant Mean Curvature in Sphere
下载PDF
导出
摘要 假设M是标准球面Sn+1中的紧致嵌入超曲面。本文利用P.Li的Sobolev不等式,对一个联系到平均曲率H和第二基本形式的张量φ的模长作Lp估计,建立了球面中常平均曲牢超曲面的整体Pinching定理。即证明了:如果M具有常平均曲率且Ricci曲率有正的下界(n-1)k,于是必存在一个仅依赖n,H和k的常数C,当σ的Ln/2模小于C时,M为球面的全脐点超曲面,其中σ表示M的第二基本形式长度的平方。 Let M be a compact embedded hypersurface with constant mean curvature H and positive Ricci curvature in the unit sphere Sn+1. By using the Sobolev inequalties of P.Li to the norm of a tensor φ, related to the second fundamental form, we set up a pinching theorem. Denote by ||φ||p the Lv norm of the square length of the second fundamental form. It is shown that there is a constant C depending only on n, H and k where (n - 1)k is the lower bound of Ricci curvature such that if ||σ||n/2 < C, then M is totally umbilic.
作者 蔡开仁
出处 《工程数学学报》 CSCD 北大核心 2004年第3期451-454,458,共5页 Chinese Journal of Engineering Mathematics
基金 浙江省自然科学基金会资助项目.
关键词 Sobolev常数 平均曲率 全脐点超曲面 Sobovev constant mean curvatur
  • 相关文献

参考文献8

  • 1Alencar H, Carmo M P do. Hypersurfaces with constant mean curvature in sphere[J]. Proc Amer Math Soc Vol, 1994;120(4):1223-1229
  • 2Chen B Y. Total mean curvature and submanifolds of finite type[M]. Singapore, Word Scientific, 1984
  • 3Croke C B. Some isometric inequalities and eigenvalue estimates [J]. Ann Sci Ecole Norm Sup,1980;13(4):419-435
  • 4Li P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold[J]. Ann Sci Ecole Norm Sup, 1980;13(4):451-167
  • 5Lin J M, Xia C Y. Global pinching theorems for even dimensional manifolds in a unit sphere[J]. Math Z,1989;201:381-289
  • 6Shen C L. A global pinching theorem of minimal hypersurfaces in the sphere[J]. Proc Amer Math Soc Vol,1989;105(1):192-198
  • 7Simons J. Minimal varieties in Riemannian manifolds[J]. Ann of Math, 1968;88:62-105
  • 8Wang H. Some global pinching theorems of submanifolds in sphere[J]. Acta mathmatica sinica (in Chinese),1988;31(4):503-509

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部