期刊文献+

多目标最优化G-恰当有效解集的存在性和连通性 被引量:3

Existence and Connectedness of G-Proper Efficient Sets for Multiobjective Optimization
下载PDF
导出
摘要 本文证明了非空紧凸集上拟凸多目标最优化问题的G-恰当有效解的存在性.在此基础上,得到了向量目标函数既是似凸又是拟凸的多目标最优化问题的G-恰当有效解集是连通的结论.同时,还给出一个关于Pareto有效解集连通性的新结果. In this paper, we prove the existence of G-proper efficient solutions of like-convex multiobjective optimization problem. On the conditions that vector objective function is like-convex and quasi-convex, we obtain the connectedness of G-proper efficient so-lution set of the multiobjective optimization problem. Finally, a new result about the connectedness of Pareto efficient solution set is gained.
出处 《运筹学学报》 CSCD 北大核心 2004年第2期72-80,共9页 Operations Research Transactions
基金 国家自然科学基金资助项目(No.70071026).
关键词 多目标最优化 G-恰当有效解集 存在性 连通性 运筹学 OR, multiobjective optimization, G-proper efficient solution, G-proper efficient point, existence, connectedness
  • 相关文献

参考文献27

  • 1胡毓达,胡一凡.锥拟凸与拓扑向量空间多目标最优化有效解集和弱有效解集的连通性[J].应用数学学报,1989,12(1):115-123. 被引量:21
  • 2Sawaragi Y., Nakayama H., and Tanino T. Theory of Multiobjective Optimization. Academic Press, Inc., 1985.
  • 3Naccache P.H. Connectedness of the set of nondominated outcome in multicriteria optimization. Journal of Optimization Theory & Applications, 1978, 25:459-467.
  • 4Warburton A.R. Quasiconcave vector maximization: Connedtedness of the sets of Paretooptimal and weak Pareto-optimal alternatives. Journal of Optimization Theory & Applications, 1983, 40:537-557.
  • 5Danilidis A., Hadjisarras N., Schaible S. Connectedness of the efficient set for tree-objectives quasiconcave maximization problems. Journal of Optimization Theory & Applitations, 1997,93:517-524.
  • 6Luc D.T. Connectedness of the efficient point sets in quasiconcave vector maximization. Journal of Mathematical Analysis & Applications, 1987, 122:346-359.
  • 7Hu Y.D., Sun E.J. Connectedness of the efficient set in strictly quasiconcave vector maximization. Journal of Optimization Theory & Applications, 1993, 78:613-622.
  • 8Sun E.J. On the connectedness of the efficient set for stictly quasiconvex vector minimization problems. Journal of Optimization Theory & Applications, 1996, 89:475-492.
  • 9Gong X.H. Connectedness of super efficient solution sets for set-valued in f3anach spaces.Mathematical Methods of Operations Research, 1996, 44:135-145.
  • 10Geoffrion A.M. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis & Applications, 1968, 22:618-630.

二级参考文献3

  • 1A. R. Warburton. Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives[J] 1983,Journal of Optimization Theory and Applications(4):537~557
  • 2G. R. Bitran,T. L. Magnanti. The structure of admissible points with respect to cone dominance[J] 1979,Journal of Optimization Theory and Applications(4):573~614
  • 3P. H. Naccache. Connectedness of the set of nondominated outcomes in multicriteria optimization[J] 1978,Journal of Optimization Theory and Applications(3):459~467

共引文献20

同被引文献4

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部