摘要
本文用于构造p-adic共轭温度系.首先,说明了热核及其Hilbert变换所适合的估计,描述了它们的正则性.并且对热核及其Hilbert变换在各个方向的导数进行了估计.然后,利用热核的卷积理论,得到了共轭温度系的边值特性.最后,通过共轭温度系解释了Hardy空间.
The theory of p-adic conjugate systems for temperatures be made. First of all, estimations for heat kernel and its Hilbert transform be got, and their regularity properties be also shown. Moreover, estimations on derivatives of heat kernel and its Hilbert transform be got. Then, properties of boundary values of the conjugate systems for temperatures be shown by Gauss integrals. Last, Hardy spaces be constructed by these conjugate systems.
出处
《数学年刊(A辑)》
CSCD
北大核心
2004年第3期305-318,共14页
Chinese Annals of Mathematics
基金
天津师范大学人才基金(N0.5RL007)资助的项目