摘要
将双曲上半空间Hn中的曲面视为Rn中的曲面,导出这两种共形浸入下平均曲率向量的关系;证明了这两种浸入下Gauss映照是一样的;给出Hn中给定Gauss映照的曲面的Weierstrass表示;证明了一个唯一性结果.
Considering the surfaces in hyperbolic space Hn as the ones in Rn, the author deduces the relation of mean curvature vectors about the two conformal immersions. The author proves that their Gauss map are same. The Weierstrass representation for surfaces of prescribed Gauss map in Hn and the result of uniqueness are obtained.
出处
《数学年刊(A辑)》
CSCD
北大核心
2004年第3期345-350,共6页
Chinese Annals of Mathematics