期刊文献+

非Jaynes-Cummings模型下二能级系统随时间演化问题的研究(英文)

A Two-state System With Evolving Process Beyond Jaynes-Cummings Model
下载PDF
导出
摘要 应用相干态近似方法研究了与单模玻色子耦合的二能级系统 ,计算了该系统下的能量占有几率Pi(t) ,并且在各种不同的条件下与Jaynes Cummings模型计算出的结果进行了比较 .通过比较得出 :当J C模型已经不再适合的条件下 ,相干态近似方法仍可以用于处理二能级系统 .当考虑到占有几率Pi(t)的微分效应时 ,相干近似方法能够提供更好的近似结果 .相干态近似方法是一种非微扰的非变分的近似方法 。 The two-level system interacting with a single-mode boson is studied using the method of coherent approximation. We calculated the occupation probability P i(t) of the system, and compare it with the results of Jaynes-Cummings model under different situations. The results show that this method can be used to deal with the problems when J-C model is not valid. CA(coherent approximation) method can provide better approximate results when the differential physical effect of P i(t) is considered. CA is a non-variational and non-perturbational method that provides a systematic scheme to improve the approximation of the system.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2004年第3期321-327,共7页 JUSTC
基金 SupportedbyNSFC (No .10 2 310 5 0 )
关键词 二能级系统 Jaynes—Cummings模型 相干近似方法 two-state system coherent approximation J-C Model
  • 相关文献

参考文献14

  • 1Jaynes E T, Cummings F W, Comparison of quantum and semi classical radiation theories with application to beam maser [J]. Proc.IEEE,1963, 51: 89-98.
  • 2Eberly J H, Narozhny N B, Sanchez-Mondragon J J. periodic spontaneous collapse and revival in a simple quantum model[J]. Phys.Rev. Lett. , 1980, 44: 1323-1326.
  • 3Yoo H I, Eberly J H, Dynamical theory of an atom with two or three levels interacting with quantized cavity fields [J] . Phys. Rep. ,1985, 118: 239-337.
  • 4Meystre P, Wright E M, Measurements-induced dynamics of a miocromaser[J] . Phys.Rev. A, 1983, 37:2524-2529.
  • 5Kulinski J R, Madajczyk J L. Strong squeezing in the Jaynes-Cummings model [J] . Phys.Rev. A, 1988,37: 3175-3178.
  • 6Swain S, Continued fraction expressions for the eigensolutions of the Hamiltonian describing the interaction between a single atom and a single field mode: compariosons with the rotating wace solutions [J] . J. Phys. A: Math.Gen. 1986, 19: 305-318.
  • 7Kus M, Lwenstein M, Exact isolated solutions for the class of quantum optical systems [J].J. Phys. A: Math. Gen. 1986, 19: 305-318.
  • 8Kujawski A. Exact periodic solution in the semi classical Jaynes-Cummings model without rotating-wace approximation[J]. Phys. Rev. A,1988, 37: 1386-1387.
  • 9Fessatidis Vassilios, Mancini Jay D, William J M, et al. Ground state of a two-level system with phonon coupling [J]. Phys. Rev. B,2000, 61: 3184-3187.
  • 10Wong W H and Lo C F. Ground state of a dissipative two-level system: Coupled-cluster approximation[J]. Phys Rev. B, 1996, 54:12859-12865.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部