期刊文献+

基于混沌—神经网络模型最优控制及应用 被引量:4

Optimal control and application based on chaos-neural network model
下载PDF
导出
摘要 由于非线性混沌时间序列内部确定的规律性,其重构相空间具有高精度短期预测性.为此,为了实现非线性、大时滞系统的自适应控制,文章根据具有混沌特性非线性、大时滞系统的时间序列重构相空间,计算相空间饱和嵌入维数、最大Lyapunov指数和系统的可预报尺度,并以此为指导,建立神经网络预测模型对系统作高精度的短期预测;在此基础上,通过反馈校正,将校正误差和控制增量引入性能函数寻优得最优控制决策,实现了对非线性、大时滞系统高精度的自适应预测控制.将该控制决策应用在锅炉过热汽温控制中,仿真表明该控制的有效性、快速性和鲁棒性. Because of chaotic time series internal certain regularity, their reconstructing chaotic attractors phase space can be used for high precision short-term forecast. Therefore, in order to realize adaptive control of a nonlinear big-lagged system, the phase space is reconstructed, its saturated embedded dimension, the maximal Lyapunov exponent and the forecast measure are calculated by the nonlinear big-lagged system time series in this paper. After that, a neural-network model is constructed, which can make high precision short-term forecast for the system. On the basis of this, an optimal controller is designed by a feedback rectification term and the control input error is introduced into a performance function, and then a high precision adaptive forecast control is realized to the nonlinear big-lagged system. The controller is applied to the overheat steam temperature system of drum boiler. The validity, the high-speed and the robustness of the control system are demonstrated by simulation results.
作者 窦春霞
出处 《系统工程学报》 CSCD 2004年第3期229-233,共5页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(60102002) 河北省基金资助项目(6011224) 霍英东基金资助项目(81057).
关键词 神经网络 最优控制 混沌时间序列 LYAPUNOV指数 鲁棒性 neural network optimal control chaotic time series Lyapunov exponent robustness
  • 相关文献

参考文献7

二级参考文献5

共引文献47

同被引文献30

  • 1丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报,2004,35(12):15-20. 被引量:31
  • 2李薪宇,吕炳朝.暂态混沌神经网络中的模拟退火策略优化[J].计算机应用,2005,25(10):2410-2412. 被引量:7
  • 3高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:120
  • 4LORENZ E N. Deterministic Nonperiodic Flow[J]. Atmospheric Sci, 1963(20) :29 - 34.
  • 5ROSSLER O E. An Equation for Continuous Chaos[ J]. PhysLett, 1976, (57):13- 15.
  • 6LAIYC, LERNERD. Effective scaling regime for computing the correlating dimension for chaotic time series[ J]. Physica D, 1998, (11 ):10
  • 7Aihara K, Takabe T, Toyada M. Chaotic Neural Networks [J]. Phys. Letters A, 1990,144(6/7) : 333 - 340.
  • 8Nozawa H. Solutions ofthe Optimization Problem Using the Neural Network Model as a Globally Coupled Map [J]. Physiea D,1994,75(1 - 3) :179 - 189.
  • 9Chen Luonan, Aihara Kazuyuk. Global Searching Ability of Chaotic Neural Networks [J]. IEEE Transactions on Circuits and System Ⅰ: Fundamental Theory and Applieation, 1999,46(8) :974 - 993.
  • 10江亚东 蒋国强.基于混沌搜索的神经网络及在优化问题中的应用.指挥技术学院学报,2001,(2):68-70.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部