期刊文献+

三路树P(m,n,t)是边幻图的证明(II) 被引量:1

A Proof of Three-path Trees P(m,n,t) Being Edge-magic(II)
下载PDF
导出
摘要 令简单图G=(V,E)是有p个顶点q条边的图.假设G的顶点和边由1,2,…,p+q所标号,且f:V∪E→{1,2,…,p+q}是一个双射,如果对所有的边xy,f(x)+f(y)+f(xy)是常量,则称图G是边幻图(edge-magic).本文证明了三路树P(m,n,t)当n为偶数,t=n+2时也是边幻图. Let G be a graph with p vertices and q edges. Assume the vertices and edges of G are labeled by 1,2,…,(p+q) such that each label is used exactly once. We define the valence of an edge to be the sum of the label of e plus the two labels of the vertices incident with e. If a labeling of G is possible such that the valence for e is constant, we call the graph G is edge-magic. In this paper, we proof three-path tree P(m,n,t) is edge-magic when n is oven t=n+2.
作者 路永洁
出处 《大学数学》 2004年第3期51-53,共3页 College Mathematics
关键词 边幻图 三路树 graph edge-magic graph tree three-path tree
  • 相关文献

参考文献2

二级参考文献1

  • 1Gerhard Ringel, Another Tree Conjecture[J]. Utilitas Mathematic, 1998,53:179-181.

共引文献1

同被引文献5

  • 1Ringel G.Another tree Conjecture[J].Utilitas Mathetics,1998,53:179-181.
  • 2Kotzig A,Rosa A.Magic valuations of fnite graphs[J].Canad Math Bull,1970,13(4):451-461.
  • 3David Craft.Esther Hunt Tesar On a question by Erdos about edge-magic graphs[J].Discrete Mathematics,1999,207:271-276.
  • 4Figueroa-Centeno R M,Ichishima R,Muntaner-Batle F A.The Place of super edge-magic labelings among other classes of labelings[J].Discrete Mathematics,2001,231:153-168.
  • 5路永洁,路永力.三路树P(m,n,t)是边幻图的证明[J].工科数学,2001,17(2):41-44. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部