期刊文献+

不确定度问题研究情况综述 被引量:5

Survey of Research on Measure of Uncertainty
下载PDF
导出
摘要 不确定度是一个度量不确定性测度函数所表示对象的不确定程度的模型,不同的不确定性理论用不同的不确定性测度描述。很多文献针对不同对象的不同不确定性测度提出了各种不确定度模型。本文从经典Shannon熵和Hartley熵出发,对这些不确定度模型作一个综述,涉及到的不确定性理论包括概率论、模糊集合论、证据理论、可能性理论等。 Measure of uncertainty is a model that quantifies the uncertain degree embedded in an uncertainty measure. In different uncertainty theory, different uncertainty measure is used to describe different types of uncertainty. Various models are given to quantify uncertainties in literatures. In this paper, models of measure of uncertainty are surveyed, referring to various kinds of uncertainty theories including probability theory, possibility theory, fuzzy sets, Dempster-Shafer theory, which is regarded as numerical uncertainty measure. This survey is started with classical Shannon entropy and Hartley entropy, then various models with refer to different uncertainty measure are introduced. As a conclusion, the need for a generalized model for the measure of uncertainty is forecasted.
作者 陈理渊 黄进
出处 《电路与系统学报》 CSCD 2004年第3期105-111,共7页 Journal of Circuits and Systems
关键词 不确定度 Hartley熵 Shannon熵 不确定性理论 不确定性测度 measure of uncertainty shannon entropy hartley entropy, uncertainty theory uncertainty measure
  • 相关文献

参考文献40

  • 1Klir G J, Yuan B. Fuzzy sets and fuzzy logic [M]. New York: Prentice-Hall, 1995.
  • 2Pal N R. On quantification of different facets of uncertainty [J]. Fuzzy Sets and Systems, 1999, 107(1): 81-91.
  • 3Klir G J, Yuan B. On nonspecificity of fuzzy sets with continuous membership functions [A]. 1995 'Intelligent Systems for the 21st Century', IEEE International Conference in Systems, Man and Cybernetics [C]. 1995, 25-29.
  • 4Klir G J, Smith R M. On measuring uncertainty and uncertainty-based information: Recent developments [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1-4): 5-33.
  • 5Harmanec D. Measures of Uncertainty and Information [M/OL]. Imprecise Probabilities Project, Cozman F G, Editor. 1998: Available from http://ippserv.rug.ac.be/.
  • 6Yager R R. On the entropy of fuzzy measures [J]. Fuzzy Systems, IEEE Transactions on, 2000, 8(4): 453-461.
  • 7Yager R R. Uncertainty representation using fuzzy measures [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 2002, 32(1): 13-20.
  • 8Hartley R V L. Transmission of Information [J]. The Bell System Technical Journal, 1928, 7(3): 535-563.
  • 9Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3-4): 379-423; 623-656.
  • 10Klir G J. Uncertainty and Information Measures for Imprecise Probabilities: An Overview [A]. 1st International Symposium on Imprecise Probabilities and Their Applications [C]. Ghent, Belgium. 1999, 234-240.

二级参考文献20

  • 1丁晓青,吴佑寿.模式识别统一熵理论[J].电子学报,1993,21(8):1-8. 被引量:12
  • 2耿卫东,潘云鹤.知识表达的分维度量理论[J].中国科学(E辑),1996,26(3):266-275. 被引量:6
  • 3邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1992..
  • 4[美]迈克尔·巴克兰德 刘子明(译).信息与信息系统[M].广州:中山大学出版社,1994..
  • 5浙江大学数学系.概率论与数量统计[M].北京:科学出版社,1992..
  • 6李德毅.走近现代信息技术[A].2001年5月工程科技论坛暨学术报告会.现代测控与信息技术在土木工程中的应用文集[C].北京,2001-05..
  • 7洪华生 邓汉忠.工程规划与设计中的概率概念第Ⅱ卷[M].冶金工业出版社,1991.489-516.
  • 8钟义信.信息技术[M].上海:上海科学技术出版社,1994..
  • 9[1]Pawlak Z, Grzymala-Busse J, Slowin ski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 10[2]Düntsch I, Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence, 1998, 106: 109-137.

共引文献51

同被引文献50

引证文献5

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部