期刊文献+

基于商空间的纹理图像分割 被引量:4

Texture Image Segmentation Based on Quotient Space
下载PDF
导出
摘要 商空间理论是新近兴起的基于人工智能研究领域的一个很有潜力的方向。文中将商空间理论应用于纹理图像的分析 ,通过对纹理的区域结构特征分析研究 ,提出基于象素 8 邻域周期排列的纹理区域特征 ,并对结构性多纹理图像进行了分割实验 ,效果令人满意。文章总结了运用商空间理论求解复杂问题一般过程 。 Theory of quotient space is a potential direction about research field based on artificial intelligence in recent years. The theory of quotient space is applied to the analysis of texture image, and the texture feature is extracted from 8 neighborhood pixel cycle form, which would segment the texture image by analyzing the field features of texture image, and the test result of structural multi texture image is satisfactory. In the end, the paper concludes the process, during which the quotient space theory is applied to work out the complicated questions, and this paper also demonstrates the practical value of the theory.
出处 《计算机应用》 CSCD 北大核心 2004年第7期37-40,共4页 journal of Computer Applications
关键词 商空间 粒度 等价关系 8-邻域算子 quotient space granularity equivalent relation 8 neighborhood operator
  • 相关文献

参考文献7

  • 1Clausi DA. K-means Iterative Fisher(KIF) unsupervised clustering algorithm applied to image texture segmentation[ J]. Pattern Recongnition, 2002, 35(9): 1959 - 1972.
  • 2Petrosino A , Ceccarelli M . Unsupervised Texture Discrimination Based on Rough Fuzzy Sets and Parallel Hierarchical Clustering[ A] .IEEE Trans. ICPR '00[ C], 2000.
  • 3Zhen Ye, Cheng-Chang Lu. Wavelet-Based Unsupervised SAR Image Segmentation Using Hidden Markov Tree Models[ A]. IEEE Trans. ICPR '02[ C], 2002.
  • 4Guoxing Liu , Shunichiro Oe . Texture Image Segmentation Method Based on Multi-layer CNN[ A]. IEEE Trans. ICTAI '00[ C],2000.
  • 5Jainguo Zhang, Tieniu Tan, Li Ma. Invariant Texture Segmentation Via Circular Gabor Filters[ A]. IEEE Trans. ICPR '02[ C], 2002.
  • 6Clausi DA, Zhao YP. Rapid extraction of image texture by co-occurrenee using a hybrid data structure[ J]. Computers & Geosciences,2002, 28(6): 763 -774.
  • 7章毓晋.图像分割[M].北京:科学出版社,2001..

共引文献576

同被引文献67

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部