期刊文献+

高耐热Cu-Al-Mn形状记忆合金热循环特性 被引量:2

THERMAL CYCLING CHARACTERISTIC OF Cu-Al-Mn SHAPE MEMORY ALLOY WITH HIGH THERMAL STABILITY
下载PDF
导出
摘要 利用电阻 温度曲线、形状记忆效应 (SME)测定和X射线衍射分析等方法研究了热循环对高Ms 点 (2 30℃ )的Cu 2 4Al 3Mn(原子百分比 ,下同 )形状记忆合金马氏体相变的影响。结果表明 ,热循环使该合金马氏体相变点下降 ,与此相伴随的结构变化是马氏体原子次近邻有序度下降 ,单斜角 β趋近 90°。与传统铜基记忆合金相比 ,该合金具有较高的抗热循环衰减能力 ,最高工作温度可达 35 0℃。该合金的高耐热性来源于 β1母相结构稳定 ,在工作温度下不易分解以及马氏体结构 (β =89.6°)接近于N1 8R ,在一定程度上抑制了热循环过程中M 1 8R向N1 8R的转变 。 The effect of thermal cycling on martensite tranformation in Cu 24Al 3Mn (at%) shape memory alloy (SMA) with high Ms temperature has been studied by means of electrical resistivity vs temperature ( ρ T ) measurement and X ray diffraction. It is shown that with increasing number of thermal cycle, the transformation temperatures decreased, the next nearest neighboring ordering degree reduced and the monoclinic angle β approached to 90°. Compared with conventional Cu based SMA, the present alloy exhibits rather high thermal stability and can work at 350℃. Its excellent thermostability results from its stable β 1 parent phase being difficult to decompose at operating temperature and its martensite structure ( β =89.6°) close to N18R which inhibit the transformation process of M18R→N18R and repress the tendency of martensite stabilization to some extent.
出处 《理化检验(物理分册)》 CAS 2004年第5期217-220,共4页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
基金 国家自然科学基金资助 ( 5 0 0 710 69)
关键词 形状记忆合金 CU-AL-MN合金 马氏体 热循环特性 耐热稳定性 Shape memory alloy Cu-Al-Mn alloy Martensite Thermal cycling
  • 相关文献

参考文献7

二级参考文献27

共引文献33

同被引文献18

  • 1Kainuma R,Takahashi S,Ishida K.Thermoelastic martensite sna shape memory effect in ductile Cu-AI-Zn alloys[J].Metallurgical and Materials Transactions A,1996,27A:2187-2195.
  • 2Suglimoto K,Kamei K,Matsumoto H,et al.Grain refinement and the related phenomema in quaternary Cu-AI-Ni-Ti shape memory alloys[J].Journal de Physique,1982,43(C4):761.
  • 3Elst R,Van Humbeeck J,Delaey L.Grain refinement of Cu-Zn-Al and Cu-Al-Ni by Ti addition[J].Materials Science and Technology,1988,4(7):644.
  • 4Takezawa K,Shindo T,Sato S.Shape memory effect in β1-CuZnAl alloys[J].Scripta Metall,1976,10:13.
  • 5Nakata Y,Tadaki T,Shimizu K.Thermao cycling effects in a Cu-Al-Ni shape memory aUoy[J].Tram JLM,1985,26(9):646-652.
  • 6WAGN Ren-hui,GUI Jia-nian,CHEN Xiao-mei,et al.EBSD and TEM study of self-accommodating martensites in Cu75.7 Al15.4 Mn8.9 shape memory alloy[J].Acts Materialia,2002,50:1835-1847.
  • 7Cnstillo C LD,Mellor B G,Blazpuez M L.The influnce of composition and grain size on the martensitic tmadomatian tempmtuers of Cu-AI-Mn shape memory alloys[J].Scipta Mater,1987,21:1711-1716.
  • 8CAO Li-fei,WANG Ming-pu,LI Zhou,et al.Thermal oyealing effect in Cu11.9AI-2.5Mn shape mentory alloy with high Ms temperature[J].Trans Nonferrous Met Sec China,2002,12(4):716-719.
  • 9Vermaut P,Litynska L,Pottier R,et al.The microstructure of melt spun Ti-Ni-Cu-Zr shapememory alloys[J].Materrials Chemistry and Physics,2003,81:380-382.
  • 10Miettinen J.Thermodynamic Description of the Cu-al-Mn System in the Copper-Rich Comer[J].Calphad,2003,27(1):103-114.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部