期刊文献+

基于梯度向量投影的自适应滤波算法的改进及其在多路回波消除中的应用 被引量:2

An Improved Adaptive Filtering Algorithm Based on Projection of Gradient Vectors and Its Application in Multi-channel Acoustic Echo Cancellation
下载PDF
导出
摘要 该文首先对Lim(2000)的基于梯度向量正交投影的算法(OGA)进行了分析和改进,在此基础上获得了一种新的自适应滤波算法(MOGA)。新算法使用时变遗忘因子对误差进行指数加权平均来估计均方误差,并使用该因子改变自适应迭代过程中滤波器系数向量的更新方向.然后将改进后的新算法扩展成两路回波消除算法用于多路回波的消除中,获得了良好的效果。仿真结果表明, MOGA不仅对时变或时不变系统具有很好的跟踪能力,克服了Lim(2000)所提算法收敛性不佳甚至有时发散的缺陷,而且应用于多路回波消除时具有计算量小,收敛速度快和精度高等特点,其收敛速度和精度优于J.Benesty(1996)和G.Sankaran(1999)的相应结果。 In this paper, a new adaptive filtering algorithm is proposed based on the analysis of the orthogonal projection of gradient vectors described in Lim(2000). In the new algorithm, a time-variant forgetting factor is introduced to estimate the Mean Square Er-ror(MSE) and change the updating direction of adaptive filter coefficient vector. Furthermore, the new algorithm is extended to two-channel algorithm for multi-channel acoustic echo cancellation. Simulation in MATLAB shows that the new algorithm has good convergence and tracking capability to time-variant and time-invariant system, and can overcome the weakness in convergence and divergence of the Lim's algorithm(2000). Moreover, the extended algorithm is of less computation, faster convergence, and higher accuracy when applied in multi-channel acoustic echo cancellation. Its convergent speed and accuracy are better than that of the algorithms proposed by Benesty(1996) and Sankaran(1999).
出处 《电子与信息学报》 EI CSCD 北大核心 2004年第4期568-573,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60274006) 广东省自然科学重点基金(990892) 教育部重点科研基金(02152)资助项目
关键词 梯度向量投影 自适应滤波 多路回波消除 时变遗忘因子 Projection of gradient vectors, Adaptive filtering, Modified algorithm, Multichannel acoustic echo cancellation
  • 相关文献

参考文献10

  • 1Widrow B, Stearns S D. Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985:98-116.
  • 2Haykin S. Adaptive Filter Theory. 3rd Editon, Englewood Cliffs, NJ: Prentice-Hall, 1996: 432-437.
  • 3Ozeki K, Umeda T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electronics and Communications in Japan, 1984, 67-A(5): 19-27.
  • 4Proakis J G. Channel identification for high speed digital communications. IEEE Trans. on Automat. Contl., 1974, AC-19(6): 916-922.
  • 5Lim J S. Fast adaptive filtering algorithm based on exponentially weighted least-square errors.Electron. Left., 1999, 35(22): 1913-1915.
  • 6Lim J S. New adaptive filtering algorithms based on an orthogonal projection of gradient vectors.IEEE Signal Processing Letters, 2000, 7(11): 314-317.
  • 7Benesty J, Duhamel P, Grenier Y. A multi-channel affine projection algorithm with applications to multi-channel acoustic echo cancellation. IEEE Signal Processing Left., 1996, 3(2): 35-37.
  • 8Sankaran S G. Stereophonic acoustic echo cancellation using NLMS with orthogonal correction factors [A]. in Proceedings of the 1999 International Workshop on Acoustic Echo and Noise Control (IWAENC) [C], Procaine Manor, 1999: 40-43.
  • 9Tangsangiumvisai N, Chambers J A, Constantinides A G. Higher-order time-varying allpass filters for signal decorrelation in stereophonic acoustic echo cancellation. Electron. Left., 1999, 35(1):88-90.
  • 10周元建,谢胜利.带有旋转因子的多路回波消除自适应滤波算法[J].电子学报,2001,29(10):1360-1363. 被引量:9

二级参考文献1

共引文献8

同被引文献20

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 3Setnes M. Supervised Fuzzy Clustering for Rule Extraction. IEEE Trans on Fuzzy Systems, 2000, 8(4) : 416 -424.
  • 4Nascimento S, Mirkin B, Moura-Pires F. Modeling Proportional Membership in Fuzzy Clustering. IEEE Trans on Fuzzy Systems, 2003, 11(2): 173-186.
  • 5Pedrycz W. Collaborative Fuzzy Clustering. Pattern Recognition Letters, 2002, 23(14) : 1675 - 1686.
  • 6Gorinevsky D. An Approach to Parametric Nonlinear Least Square Optimization and Application to Task-Level Learning Control. IEEE Trans on Automatic Control, 1997, 42(7) : 912 -927.
  • 7Wasito l, Mirkin B. Nearest Neighbours in Least-Squares Data Imputation Algorithms with Different Missing Patterns. Computational Statistics & Data Analysis, 2006, 50(4) : 926 -949.
  • 8Nascimento S. Fuzzy Clustering via Proportional Membership Model. Amsterdam, Netherlands: I05 Press, 2005.
  • 9Bertsekas D P. Nonlinear Programming. 2nd Edition. Nashua, USA: Athena Scientific, 2000.
  • 10Polyak B T. Introduction to Optimization. New York, USA: Optimization Software Inc. , 1987.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部